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A novel PGAP3 mutation in a Croatian boy with
brachytelephalangy and a thin corpus callosum
Tomohiro Sakaguchi1,7, Tamara Žigman2,7, Danijela Petković Ramadža2,3, Lana Omerza2,3, Silvija Pušeljić4,5, Zrinka Ereš Hrvaćanin6,
Noriko Miyake1, Naomichi Matsumoto1 and Ivo Barić2,3

Biallelic mutations in the post-GPI attachment to proteins 3 (PGAP3) gene cause hyperphosphatasia with mental retardation
syndrome 4 (HPMRS4), which is characterized by elevated serum alkaline phosphatase, severe psychomotor developmental delay,
seizures, and facial dysmorphism. To date, 15 PGAP3mutations have been reported in humans. Here we report a novel homozygous
PGAP3 mutation (c.314C4A, p.Pro105Gln) in a Croatian patient and fully describe the clinical features.
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Hyperphosphatasia with mental retardation syndrome (HPMRS),
also known as Mabry syndrome, is an autosomal recessive disease
that is associated with inherited glycosylphosphatidylinositol (GPI)
deficiencies (IGDs).1 There are two types of genes involved in IGDs:
phosphatidylinositol glycan (PIG) genes and post-GPI attachment
to proteins (PGAP) genes. PIG genes are involved in the
biosynthesis and transfer of GPI, while PGAP genes play a role
in the remodeling, sorting, and transport of GPI-anchored proteins
(GPI-APs).1 To date, at least six genes responsible for HPMRS have
been reported: PIGO (MIM 614730),2 PIGV (MIM 610274),3 PIGW
(MIM 610275),4 PIGY (MIM 610662),5 PGAP2 (MIM 615187),6

and PGAP3 (MIM 611801, NM_033419.4).7 HPMRS is registered in
the Online Mendelian Inheritance in Man (OMIM) database as a
phenotypic series (HPMRS1-6, OMIM PS239300), and PGAP3 is
the gene responsible for HPMRS4 (MIM 615716). Although
there are a variety of clinical features of HPMRS, the major
features include intellectual disability, hyperphosphatasia,
seizures, and facial dysmorphism, as well as anomalies, such as
brachytelephalangy.1,8

We encountered a patient with HPMRS. He was born to healthy
and nonconsanguineous parents (from the same region) after an
uneventful pregnancy with no asphyxia at birth (Apgar score was
10/10) (Figure 1a). He has no siblings, and his family history is
unremarkable. His birth length, weight, and head circumference
were 51 cm (+0.59 SD), 3,360 g (+0.03 SD), and 35.5 cm (+0.82 SD),
respectively. Multiple congenital anomalies, including a broad
nasal bridge, tented upper lip vermilion, cleft palate, low set
ears, micrognathia, retrognathia, brachytelephalangy, left sided
cryptorchidism, wide feet, and broad toes, were noticed at birth.
Palatoplasty was performed at 1 year of age, and left orchiopexy
was performed at 4 years of age. Progressive thoracic scoliosis
started at 5 years of age and was treated with orthotics at 6 years
with no improvements. At 2.5 months, he started intensive
physical therapy for his marked generalized hypotonia that has
been continued until now. He was unable to sit up by himself until
4 years of age. He first experienced recurrent generalized

seizures with dysrhythmic electroencephalographic paroxysmal
changes at 3 years of age, and these seizures were well controlled
with phenobarbital. The seizures started again at 5 years of
age and were controlled with valproate. When HPMRS was
suspected at 6.5 years of age, he started treatment with 200 mg of
pyridoxine daily and has been free of seizures since. Sleep
disturbance (awake at night and sleeping during the daytime)
started at 3 years of age, a condition that was normalized with
pyridoxine. Pyridoxine was administered since it has been
reported to be effective for neuronal symptoms in hyperpho-
sphatasia with neuronal deficits.9 A brain magnetic resonance
imaging at 5 years of age showed a thin corpus callosum without
any other gross abnormalities (Figure 2).
Currently, at the age of 8 years, he shows severe psychomotor

developmental delay, autistic behavior, and bruxism. Eye
contact is possible for short periods of time, but he has a short
attention span. He can sit alone, crawl clumsily, and occasionally
stand with support, but he cannot walk independently or speak
any meaningful words. He often smiles and vocalizes with simple
words. He cannot understand simple commands, but he can
understand daily tasks, such as going for a walk or eating
meals. He partially participates in dressing himself. He is unable to
use cutlery and eats with his fingers. His vision and hearing
are normal, but he cannot control egestion. His serum alkaline
phosphatase (ALP) has been elevated (in the range from
500–1200 U/L) since the age of 1 year when it was first measured,
and his ALP level was 578 U/L at the age of 7.5 years (reference
range: 172–405 U/L). His serum 25-OH-vitamin-D3, calcium, and
phosphorus levels have been in the normal range.
To identify the genetic cause of his condition, we performed

whole-exome sequencing (WES) on the proband as reported
previously.10 DNA was extracted from peripheral blood leukocytes
after obtaining written informed consent. This study protocol was
approved by the institutional review board of Yokohama City
University School of Medicine. Using WES, 96.8% of the coding
region of RefSeq genes was covered by 10 reads. We checked for
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Figure 1. Genetic analysis of the patient. (a) Familial pedigree and the PGAP3 mutation. (b) Human PGAP3 cDNA and the PGAP3 protein
structure with previously reported mutations and a newly identified mutation in this study (underlined and in red). PGAP3 consists of eight
exons, and the PGAP3 protein contains seven transmembrane domains (TMD). The description of the mutation was based on NM_033419.4.
(c) Electropherograms of the patient (II-1) and his parents (I-1 and I-2). (d) Evolutionary conservation of p.Pro105 in PGAP3. Protein sequences
of different species were aligned using CLUSTALW (http://www.genome.jp/tools/clustalw/).

Figure 2. Brain magnetic resonance imaging of the proband at the age of 5 years. T1- (a) and T2-weighted (b) axial images and a proton
density-weighted sagittal image (c) are shown. A thin corpus callosum was observed (white arrows).
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variants in the known disease genes responsible for HPMRS and
found a homozygous missense variant (NM_033419.4, c.314C4A,
p.Pro105Gln) in PGAP3. This mutation was predicted as
pathogenic by the in silico software: SIFT = 0, PolyPhen2= 1, and
MutationTaster = disease causing. This variant was not registered
in the Exome Aggregation Consortium (ExAC: http://exac.broad-
institute.org/), NHLBI GO Exome Sequencing Project 6500
(ESP6500: http://evs.gs.washington.edu/EVS/), Human Genetic
Variation Database (HGVD: http://www.hgvd.genome.med.kyoto-
u.ac.jp/), or our in-house exome database (n= 575). Of note, this
missense mutation was located at an identical position to a
previously reported pathogenic mutation but led to a different
base alteration to a different amino acid (c.314C4G, p.Pro105Arg)
(Figure 1b).7 Sanger sequencing revealed that this new mutation
was inherited from both unaffected carrier parents (Figure 1c).
This amino residue is evolutionally conserved from C. elegans to
H. sapiens (Figure 1d). In addition, similar to previously reported
patients, the proband in this report showed facial dysmorphism,
cryptorchidism, severe psychomotor developmental delay, speech
impairment, hypotonia, autistic behavior, bruxism, and sleep
disturbance (see also Supplementary Table S1).
To date, 15 mutations in PGAP3 have been reported in 30

patients with HPMRS 4 (Figure 1b).7,8,11–15 More than half of the
mutations (9/15; 60%) are in exon 3 and exon 7, and these
regions are considered hotspots for mutations.13,14 The mutation
identified in our proband is also located within this hotspot in
exon 3.
The clinical features of the current patient were compared with

those in previously reported patients (Supplementary Table S1).
All patients, including the one in this study, showed facial
dysmorphism, motor delay, speech impairment, and elevated
serum ALP. Interestingly, our patient also showed brachytelepha-
langy, one of the characteristic features of HPMRS. However, while
brachytelephalangy has never been reported in HPMRS4 caused
by the PGAP3 mutation, broad fingers and toenails have been
reported in some patients with the PGAP3 mutation.7,8,11–15

This finding indicates that the PGAP3 mutation can cause
brachytelephalangy, as the other types of HPMRS.
The proband in this study showed a thin corpus callosum, which

is the most common type of brain abnormality among patients
with the PGAP3 mutation. Interestingly, a thin corpus callosum is
observed in all patients with a missense mutation (c.314C4G, p.
Pro105Arg) or truncating mutation (c.402dupC, p.Met135Hisfs*28)
in a homozygous state but not in those with other mutations.
Some genotype–phenotype correlation is possible, although
information is limited.
Hyperphosphatasia is an important clinical feature of HPMRS. All

patients showed hyperphosphatasia (28/28; 100%), and most
patients with PGAP3 mutations (22/28; 79%) had a higher serum
ALP (1.1–3.6 times the upper limit) than the age-adjusted normal
ranges (Supplementary Table S1). Patients with PIGO, PIGW,
or PIGY mutations have been reported to have normal levels or
mildly elevated ALP levels.5,13,16–18 By contrast, more than half
of patients with PIGV or PGAP2 mutations showed extremely
high levels of ALP (over 3.6 times the normal upper limit).6,17,19,20

The degree of elevated serum ALP may be related to the
mutated genes.
In conclusion, we report HPMRS4 in a patient with a novel

missense PGAP3 mutation. As there is a minimal number of
patients with PGAP3 mutations, further analysis of these patients is
required to understand the genotype–phenotype correlation.

HGV DATABASE
The relevant data from this Data Report are hosted at the Human
Genome Variation Database at http://dx.doi.org/10.6084/m9.fig
share.hgv.1755 (2018).
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