
Use of Artificial Neural Networks for Retention
Modelling in ion Chromatography

Srečnik, Goran; Debeljak, Željko; Cerjan-Stefanović, Štefica; Bolanča,
Tomislav; Novič, Milko; Lazarić, Katica; Gumhalter-Lulić, Željka

Source / Izvornik: Croatica Chemica Acta, 2002, 75, 713 - 725

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:239:241939

Rights / Prava: Attribution 4.0 International / Imenovanje 4.0 međunarodna

Download date / Datum preuzimanja: 2025-03-04

Repository / Repozitorij:

Repository UHC Osijek - Repository University 
Hospital Centre Osijek

https://urn.nsk.hr/urn:nbn:hr:239:241939
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://repozitorij.kbco.hr
https://repozitorij.kbco.hr
https://dabar.srce.hr/islandora/object/kbco:357


ISSN-0011-1643
CCA-2828 Original Scientific Paper

Use of Artificial Neural Networks
for Retention Modelling in Ion Chromatography

Goran Sre~nik,a @eljko Debeljak,a [tefica Cerjan-Stefanovi},b Tomislav
Bolan~a,b,* Milko Novi~,c Katica Lazari},a and @eljka Gumhalter-Luli}a

aAnalytical Development Department, Pliva, Pharmaceutical Industry,
Prilaz baruna Filipovi}a 25, 10000 Zagreb, Croatia

bLaboratory of Analytical Chemistry, Faculty of Chemical Engineering
and Technology, Maruli}ev trg 20, 10000 Zagreb, Croatia

cNational Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia

Received July 17, 2001; revised April 2, 2002; accepted April 18, 2002

The aim of this work was to develop an empirical model for reten-
tion of inorganic anions (fluoride, chloride, nitrite, sulphate, bro-
mide, nitrate, and phosphate) in suppressed ion chromatography
with hydroxide selective stationary phases using artificial neural
networks. Three-layer feed-forward neural network trained with a
Levenberg-Marquardt batch error back propagation algorithm has
been used to model retention mechanisms of inorganic anions with
respect to the mobile phase parameters. The number of hidden lay-
er nodes of the neural network and the number of iteration steps
were optimized in order to obtain the best possible retention mo-
del. This study shows that an optimized artificial neural network
is a very accurate and fast retention modelling tool to model vari-
ous inherent linear and non-linear relationships of retention beha-
viour. This has been proven by developing the neural network re-
tention model with average relative errors of 0.88% obtained using
only 300 iteration steps.
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ral networks.
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INTRODUCTION

Anion separation by suppressed and non-suppressed ion chromatogra-
phy has become a routine analytical procedure in recent years.1–4 This tech-
nique offers a reliable methodology for simultaneous determination of ions
and has been found to be useful in many applications, e.g., environmental,
industrial and clinical analysis. An interesting aspect of anion chromatogra-
phy is the selectivity of separation. An understanding of the rules that influ-
ence selectivity is essential for optimizing the conditions for difficult separa-
tions. The most important factors influencing selectivity are the eluent
anion, its charge, eluent concentration and pH, eluent flow rate,5 as well as
the sorbent matrix, functional group and its content. The influence of the
character of the functional group,6–8 space length9 and character of the sup-
port10 was studied earlier. Retention models for ion chromatography were
evaluated and only partial agreement was found between theoretical models
and experimental data.11,12 There is still much to be investigated, the problem
of the selectivity of mono- and divalent anions having been neglected so far.

Development of computer-assisted retention modelling routines in ion
chromatography can be approached in a number of ways. Two types of re-
tention models can be identified – theoretical and empirical. A theoretical
model is derived from fundamental equations and invariably requires know-
ledge of a range of parameters relating to the analyte, stationary phase, and
eluent, before the calculation of the retention time of the analyte is possi-
ble.13–17 On the other hand, empirical models concentrate on predicting the
manner in which retention changes, when some ion chromatographic para-
meter is varied between two or more known values, rather than on the un-
derlying theoretical explanation of these changes.

The use of the machine learning methods for empirical retention model-
ling represents the fundamental research issue. The ability of the computer
to learn independently is a recognised manifestation of intelligence and of-
fers the potential to build an intelligent system more efficiently. There are
many different approaches to developing a method of machine learning.
Techniques that are currently popular include artificial neural networks
(ANN), genetic algorithms (GA), and induction18 ANN and operate in a
manner that mimics our current understanding of the architecture of the
brain, which is postulated to consist of 109 to 1012 of linked neurons. These
algorithms attempt to model the relationship between attributes by a simi-
lar network, which finally becomes the rather abstract knowledge represen-
tation of the expert system. The main drawback of these systems is that the
knowledge representation, a network of neurons connected by various
weighting factors, is hard to decode and alter. Hence, the future mainte-
nance is complex and the results may not be obvious.19,20
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In this work, the ANN was used for retention modelling of the anion se-
paration in ion chromatography. Influence of the eluent flow rate and eluent
anion concentration (OH–) on the separation of seven inorganic anions (fluo-
ride, chloride, nitrite, bromide, nitrate, sulphate and phosphate) were inves-
tigated. Main advantages of the developed ANN retention model over other
models is description of the whole ion chromatographic separation system at
the same time and use of a huge set of testing data, consisting of 112 experi-
mental points, which guarantee the reliability of the proposed model. A uni-
que technique of experimental data selection for the training set was used,
enabling improvement of the ANN prediction power. The aim of this work is
to characterise ANN in terms of the number of nodes in hidden layers and
the number of iteration steps leading to a more accurate description of the
retention model.

Methodology

Neural network ideas were developed in the 1950's but went into decline
in the 1960's when it was proven that the linear architecture used at that
time was unable to solve nonlinear problems. Only with the advent of new
network architectures and teaching algorithms in the mid-1970's and early
1980's did their true application potential become evident. As recent detail-
ed books and articles on the ANN theory and its applications to chemistry
are available,19,22 only a brief description of neural network concepts will be
given here.

A rather unique concept of neural networks are the multi-layered feed-
forward neural networks. A multi-layered feed-forward neural network con-
sists of three or more layers of nodes: one input layer, one output layer and
one or more hidden (intermediate) layers. A node in one layer is connected
to all nodes in the next layer (feed-forward architecture). A node receives
and/or sends signals from/to other nodes or the outside world via the net-
work connections. Each signal is weighted by a weight factor associated
with a connection. The node input is determined by the incoming (weighted)
signals, the node output is a function of the input. Usually, a linear function
is used for the input layer (input nodes are simple flow-through nodes) whi-
le the sigmoidal function is often used for the hidden nodes to enable model-
ling of non-linear relations. The transfer function of the output nodes de-
pends on the required output of the networks. If this output is qualitative, a
sigmoid transfer function is usually used. If the output is quantitative, a li-
near function may be used.

Adequate functioning of a neural network is highly dependent on the
way the signals are propagated through the network. This signal propaga-
tion is determined by the weights of the connections. In general, the proper
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weight setting is not known beforehand and therefore the weights are ini-
tially given a random value. The process of updating the weights to correct
values is called training or learning. A correct weight set is usually achieved
by means of supervised learning. The back-propagation learning rule is of-
ten used. According to this learning rule, in, for example, a three layer neu-
ral network, first the weights from the hidden layer to the output layer are
adopted, and then the weights from the input layer to the hidden layer. Vari-
ous learning rules can be used for weight adaptations, for example: the Del-
ta learning rule, Levenberg-Marquardt learning rule, etc.23–26

During and after the training, the network performance has to be tested.
This is done with a test set consisting of other examples comparable to the
set of examples that was used for the network training. In the testing pha-
se, the input quantities are fed to the network, and the desired output quan-
tities are compared with the output quantities produced by the neural net-
work. The (dis)agreement of the two sets of output quantities gives an indi-
cation if the performance meets the requirements specified in advance and
if the network is ready for real analysis purposes. In Figure 1, a possible
neural network structure and a schematic diagram of neural network learn-
ing are shown.
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Figure 1. A possible neural network structure and schematic diagram of the neural
network learning process.



EXPERIMENTAL

Reagents

Stock solutions of fluoride (1.0000 g/L), chloride (1.0000 g/L), nitrite (1.0000 g/L),
sulphate (1.0000 g/L), bromide (1.0000 g/L), nitrate (1.0000 g/L) and phosphate
(1.0000 g/L) were prepared from the air-dried (at 105 °C) salts of individual anions of
p.a. grade (Merck, Darmstadt, Germany). The appropriate amount of salt was added
into a volumetric flask (100 mL) and dissolved with Milli-Q water. Working standard
solutions of fluoride (2.00 mg/L), chloride (5.00 mg/L), nitrite (10.00 mg/L), sulphate
(10.00 mg/L), bromide (20.00 mg/L), nitrate (20.00 mg/L), and phosphate (30.00 mg/L)
were prepared by measuring the appropriate volume of stock solution of a particular
anion into a 100 ml volumetric flask, which was later filled to the mark with Milli-Q
water. Working eluent solutions were prepared on-line by appropriate dilution of
KOH with Milli-Q water. 18 M� cm–1 water (Millipore, Bedford, MA, USA) was used
for dilution in all cases.

Apparatus

The Dionex DX500 chromatography system (Sunnyvale, CA, USA) equipped with
a quartenary gradient pump (GP50), eluent generator module (EG40), chromatogra-
phy module (LC25) and detector module (ED40) was used in all experiments. Sepa-
ration and suppressor columns used were the Dionex IonPac AG15 (4 � 50 mm) guard
column, IonPac AS15 (4 � 250 mm) separation column and ASRS-ULTRA-4 mm sup-
pressor column, working in the recycle mode. The sample-loop volume was 50 �l.
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Figure 2. Scheme of the DX500 ion chromatography system with a built-in electro-
dyalitic KOH generator (EG40). – GP50, quaternary gradient pump; EG40, eluent
generator; DU, degas module; Inj, injector; GC, guard column (AG4A-SC); AC, ana-
lytical column (AS4A-SC), ASRS, suppressor column (ASRS-ULTRA, recycle mode);
BPC, back-pressure coil; ED40, electrochemical detector (conductivity mode); S,
sample; eluent, OH–; W, waste.



The eluent flow rates were 1.00 to 1.95 mL/min and OH– concentration in eluent was
25.00 to 60.00 mmol/L. The whole system was computer controlled by means of
PeakNet 5.1 software.

The data for further evaluation were obtained by exporting the appropriate chro-
matograms into ASCII files. ASCII data files were further evaluated using the Mi-
crocal Origin (Microcal Software, USA) software package. The scheme of the applied
chromatography set-up is schematically presented in Figure 2.

Experimental Design

The experimental design was planned in such a way as to describe the chromato-
graphic behaviour in a multi-dimensional space: retention time versus eluent flow
rate and OH– concentration in eluent. The eluent flow rate was varied in a range
from 1.00 to 1.95 mL/min and the OH– concentration in eluent was varied from 25.00
to 60.00 mmol/L. The 128 experimental data points were obtained. The experimental
data used in the modelling procedure are presented in Table I (see Supplementary
material). The experimental data points were logarithmically (log10) transformed be-
fore modelling, because of the heteroscedastic nature of the retention times variance.
This provided the homogeneous variance in the network output (retention times of
fluoride, chloride, nitrite, sulphate, bromide, nitrate, and phosphate). In Table I, all
retention time data (columns 3 to 5) are logarithmically transformed (log10).

The independent training set (16 experimental data points) and the test set (112
experimental data points) were selected to cover the whole design space. For that
purpose, the design space (128 experimental data points) was divided into 16 sub-
spaces from which one experimental data point was chosen for the training set from
each subspace, using the random function. The remaining 112 experimental data
points were used for the testing set. All calculations relating to the training and tes-
ting procedures were repeated 10 times, including the selection of experimental data
points (using the random function) for the training (16 experimental data points)
and testing (112 experimental data points) sets.

Neural Networks

The neural network used in this paper was a feed-forward backpropagation neu-
ral network. The input layer consisted of two nodes, representing the eluent flow
rate and the OH– concentration of the eluent. The output layer consisted of seven
nodes representing the retention times of seven inorganic anions (fluoride, chloride,
nitrite, sulphate, bromide, nitrate and phosphate). The network had one hidden la-
yer and the number of hidden layer neurons was varied from 1 to 6 in order to pro-
vide the best possible solution of the retention modelling problem. Two different
transfer functions were used. The hyperbolic tangent sigmoid transfer function was
used for computation of the hidden layer nodes activities:
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x W
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where Q is the transfer function, x is the input vector, and W represents the weight
vector. For computation of output activities, the linear transfer function was emplo-
yed:

�( )x W x Wi i� � � (2)

The momentum using Levenberg-Marquardt batch learning procedures were ap-
plied, and the number of hidden layer nodes and the number of iteration steps used
for training procedures were optimized, leading to the best possible description of
the retention behaviour.

The program for the neural network was made by the authors on the MATLAB
environment (MATLAB 6.0, MathWorks, Sherborn, MA, USA). All the calculations
were performed on an IBM compatible personal computer equipped with an 800 MHz
Pentium III processor, and 256 Mb RAM.

Optimization of the Neural Network

The optimal numbers of hidden nodes and iteration steps should be chosen in or-
der to obtain a good performance model. Therefore, the number of hidden nodes was
varied from 1 to 6 and the number of iteration steps was varied from 100 to 1100.
The optimal numbers of hidden nodes and iteration steps were determined by vali-
dating the ANN performance with a separate test set of experimental data during a
training.

The testing procedures involved the cross-validation procedure and application
of Dixon's outlier filter.20 Dixon’s outlier test was used for exclusion of outliers dur-
ing optimization of network parameters, followed by the retraining procedure using
different neural network parameters (initial weight vector, momentum factor) for
the purpose of obtaining a better generalization of the retention mechanism.

To test the performance of the developed artificial neural network retention
model, an independent test set (112 experimental data points) was used to calculate
the relative error, average of relative errors and MPRESS (mean predicted residual
sum of squares). The following equations were used in calculations:

relative error =
1 p

pN i

y y

y

i i

i

N –
�

�

	






�

�


 � 100 (3)

average of relative errors relative error� �1
M i

i

M

( ) (4)

MPRESS ( p� �1 2

N i
i

N

iy y– ) (5)

where yi represents the mean value of the neural network output (retention
times of particular ions), yip is the predicted value of the neural network
output, N represents the number of cases used for calculations of statistical
parameters (N = 112 for each calculation) and M is the number of neural

ARTIFICIAL NEURAL NETWORKS FOR RETENTION MODELLING 719



network outputs (fluoride, chloride, nitrite, sulphate, bromide, nitrate, and
phosphate). All relative errors, averages of relative errors and MPRESS we-
re calculated as an average of non-logarithmically transformed data obtain-
ed after 10 testing runs (each run with 112 experimental data points). The
results of the neural network optimization procedures are shown in Figures
3 and 4 and in Table II.

RESULTS AND DISCUSSION

The results of the artificial neural network optimization procedures, us-
ing 128 experimental data points for the retention modelling procedure (Ta-
ble I), can be discussed as follows.

Figure 3 shows that in the case of 100 iteration steps, the optimal num-
ber of hidden nodes is three rather than two. The average of relative errors
of ANN with three hidden nodes is 1.14% and with two hidden nodes 1.16%,
which is a very close margin to decide the actual number of hidden nodes
using 100 iteration steps. However, if three hidden nodes are used, the rela-
tive error ranges between a minimum of 3.22% for nitrite and a maximum
of 5.49% for phosphate while MPRESS is 2.51 � 10–4 (Table II).

720 G. SRE^NIK ET AL.

TABLE II

Performance characteristics of the developed artificial neural network retention
model (relative errors, average of relative errors, MPRESS) for the best results of
the optimization process (number of iteration steps, number of hidden layer nodes)

iteration steps 100 300 500 700 900 1100

hidden layer node 3 3 3 3 3 4

relative
error / %

F– 1.15 0.58 0.63 0.70 0.66 0.52

Cl– 1.23 0.87 0.92 1.01 0.92 0.88

NO2
– 0.93 0.85 0.89 0.99 0.86 0.97

SO4
2– 0.89 0.77 0.82 0.83 0.78 0.85

Br– 1.38 1.14 1.17 1.29 1.18 1.39

NO3
– 1.18 1.00 1.10 1.10 1.05 1.22

PO4
3– 1.21 1.06 1.06 1.07 1.01 1.08

average of
relative errors / %

1.14 0.89 0.94 1.00 1.92 0.94

MPRESS / 10–4 2.51 1.66 1.94 2.12 1.71 2.08
a All relative errors, averages of relative errors and MPRESS were calculated as an average of
non-logarithmically transformed data obtained after 10 testing runs (each run with 112 experi-
mental data points).
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Figure 3. Optimization of the number of nodes in the hidden layer using 100, 200,
300, 500, 700, 900 and 1100 iteration steps. Average of relative errors against the
number of nodes in the hidden layer.
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In the case of 300 iteration steps, the optimal number of hidden layer
nodes is three (Figure 3). This was proven by the average of the relative er-
rors of 0.88%, which is significantly lower than the average of relative er-
rors in the case of 100 iteration steps. The relative error for a particular an-
ion ranged from the exceptionally low 0.58% for fluoride to very satisfactory
1.14% for bromide (Figure 4) while MPRESS was 1.66 � 10–4 (Table II).

The shape of the curve obtained by using 500 iteration steps clearly indi-
cates that the optimal number of hidden layer nodes is three, and the aver-
age of relative errors is 0.94% (Figure 3). In all the three previous optimiza-
tion steps, the calculated optimal number of hidden layer nodes was three,
while the number of iteration steps varied. This allowed to evaluate the
number of iteration steps used for the learning procedure (100, 300 or 500).
It can be seen that the lowest average of relative errors of 0.74% was ob-
tained using 300 iteration steps. The relative error of a particular anion us-
ing 500 iteration steps has very close but slightly higher values than in the
case of 300 iteration steps, and it ranged from 0.63% for fluoride to 1.17%
for bromide while MPRESS was 1.94 � 10–4 (Table II).

When using 700 and 900 iteration steps, the optimal number of hidden
layer nodes was three with an average of relative errors of 1.00% for 700
and 0.92% for 900 iteration steps (Figure 3). The both values of the average
of relative errors are higher than the average of relative errors of the net-
work with three nodes and 300 iteration steps. But despite the assumption
that 700 iteration steps is a high value and that it is very likely to overtrain
the network by using 700 iteration steps, the lower value of the average of
relative errors in using 900 iteration steps indicates the possibility of a local
minimum. Therefore, further optimization in terms of increasing the num-
ber of iteration steps is necessary. The relative error for a particular anion
using 700 iteration steps ranged from 0.62% for fluoride to 1.05 % for phos-
phate with MPRESS of 2.12 � 10–4 and by using 900 iteration steps, it rang-
ed from 0.66% for fluoride to 1.18% for bromide with MPRESS of 1.71 � 10–4

(Table II).

In the case of 1100 iteration steps, the optimal number of hidden layer
nodes was four. The average of the relative errors is 0.99%, which is higher
than the average of relative errors calculated using 900 iterations steps and
three hidden layer nodes (Figure 3). The relative error for a particular anion
using 1100 iteration steps ranged from 0.62% for fluoride to 1.05% for phos-
phate while MPRESS was 2.08 � 10–4. This indicates that the function,
which the network represents in using 1100 iteration steps and 4 hidden
layer nodes, is too complex and does not describe adequately the ion chro-
matography retention mechanism. Thus, the optimal number of hidden
layer nodes is three and the optimal number of iteration steps is 300.
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The results shown in Table I indicate that the selectivity of ion chro-
matographic methods strongly depends on the applied ion chromatographic
conditions (eluent flow rate, OH– concentration of the eluent). By adjusting
the eluent flow rate and OH– concentration of the eluent, it is possible to in-
crease selectivity. This is a crucial factor for numerous different applications
of the ion chromatography analysis, particularly for wastewater analysis
and analysis of samples with very different concentrations of analyte com-
ponents. The possibility of adjusting the retention times of fluoride and
chloride is crucial for the determination of organic acids (acetate, formate
and propionate) while the possibility of adjusting the retention times of ni-
trite and sulphate is crucial for butyrate and carbonate determination. By
adjusting the retention times of slow-eluting anions (phosphate and nitrate)
it is possible to obtain shorter ion chromatographic runs and speed up the
analysis, without decreasing the selectivity of fast-eluting anions (fluoride
and chloride). The developed artificial neural network retention model im-
proves the performance characteristic of the applied method and speeds up
the new method development by reducing unnecessary experimentation.

CONCLUSIONS

In this work, the ANN was used for retention modelling of anion separa-
tion in ion chromatography. The described neural network is characterized
in terms of optimization of the number of nodes in the hidden layer and the
number of iteration steps, leading to a more accurate description of the re-
tention model. Problems arise when conventional cross-validation is applied
to neural network models trained with the LM algorithm. Every new initiali-
zation can be regarded as a new start position for the LM search for the
global minimum. Although special learning parameters (e.g., momentum
factor) can help avoid local minima, no guarantee of finding the global mini-
mum can be given. The probability of finding the global minimum was en-
chanced by selecting various random start positions for the LM search. Con-
sequently, there is a better chance of walking around the local minima.
Obviously, the chance of finding the global minimum directly depends on
the smoothness of the error hyperplane (Figure 3) and the number of local
minima. Cross-validation by means of reinitializations and retraining of the
networks using Dixon's filter as a criterion, enables establishment of a bet-
ter neural network retention model. It can be concluded that the optimal
number of nodes in the hidden layer is 3 and the optimal number of itera-
tion steps is 300. Applying a larger number of hidden layer nodes and a lar-
ger number of iteration steps results in a considerable deterioration of per-
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formance (Figure 3). In that case, the neural models become overtrained
and lose their generalization ability of retention modelling.

The developed neural network is capable of retention modelling of all in-
vestigated anions (fluoride, chloride, nitrite, sulphate, bromide, nitrate and
phosphate) at the same time with very superior performance. This fact was
proven by the value of the average of relative errors of 0.88% and MPRESS
of 1.66 � 10–4, calculated with 112 experimental data points in the test set
(Table II).

It has been shown that the selectivity of ion chromatographic methods
strongly depends on the applied ion chromatographic conditions (eluent flow
rate, OH– concentration of the eluent). The developed retention model al-
lows manipulation of the appearance of a particular peak on the chromato-
gram as well as improvement of the selectivity between particular anions.
Use of this retention model makes it possible to improve the performance
characteristics of the applied method and speed up the new method develop-
ment by reducing unnecessary experimentation.

Supplementary material. – Table I: Experimental data set used for the retention
modelling procedure. Dependence of retention times of analyzed ions (fluoride, chlo-
ride, nitrite, sulphate, bromide, nitrate, and phosphate) on ion chromatographic ana-
lysis conditions (eluent flow rate and potassium hydroxide concentration of the eluent).
All retention time data (columns 3 to 5) have been logarithmically transformed (log10).

This material is available on the journal web site: http://pubwww.srce. hr/ccacaa
or on request from the authors.

Acknowledgement. – We thank Bono Lu~i} for his help in presenting the model-
ling methodology.
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Uporaba umjetnih neuronskih mre`a za retencijsko
modeliranje u ionskoj kromatografiji

Goran Sre~nik, @eljko Debeljak, [tefica Cerjan-Stefanovi}, Tomislav Bolan~a,
Milko Novi~, Katica Lazari} i @eljka Gumhalter-Luli}

Svrha rada je razvoj empirijskog modela za retencijsko modeliranje anorganskih
aniona (fluorida, klorida, nitrita, sulfata, nitrata, bromida i fosfata) u suprimiranoj
ionskoj kromatografiji s hidroksid-selektivnom stacionarnom fazom, i to uporabom
umjetne neuronske mre`e. Unaprijedna neuronska mre`a s tri sloja, obu~avana Le-
venberg-Marquardt-ovim algoritmom s povratnim rasprostiranjem pogre{ke te prila-
godbom parametara mre`e nakon prolaska ~itavog skupa za obuku kroz mre`u, upo-
rabljena je za modeliranje retencijskog mehanizma anorganskih aniona, s obzirom
na parametre mobilne faze. Broj neurona u skrivenom sloju neuronske mre`e i broj
iteracijskih koraka optimiran je da bi se dobio {to bolji retencijski model. Pokazano
je da optimirana neuronska mre`a omogu}uje vrlo to~an i brz postupak za modeli-
ranje linearnih i nelinearnih ovisnosti te je primjenjiva za modeliranje retencije. To
je dokazano razvijanjem modela retencije, uporabom neuronske mre`e sa srednjom
vrijedno{}u relativnih pogre{aka od 0,88%, uz kori{tenje 300 iteracijskih koraka.
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TABLE I

Experimental data set used for retention modelling procedure. Dependence of reten-
tion times of analysed ions (fluoride, chloride, nitrite, sulphate, bromide, nitrate, and
phosphate) on ion chromatographic analysis conditions (eluent flow rate and concen-
tration of potassium hydroxide in eluent). All retention times data (columns 3 to 5)

are logarithmically transformed (log10).

eluent
flow rate
mL/min

c(OH–) in
eluent /
mmol/L

F–/
min

Cl–/
min

NO2
–/

min
SO4

2 –/
min

Br–/
min

NO3
–/

min
PO4

3–/
min

1.05 25.00 0.76 1.01 1.09 1.34 1.36 1.40 1.85

1.15 25.00 0.73 0.98 1.06 1.31 1.32 1.37 1.81

1.25 25.00 0.71 0.95 1.03 1.28 1.28 1.33 1.77

1.35 25.00 0.69 0.92 1.00 1.24 1.25 1.30 1.74

1.45 25.00 0.67 0.90 0.98 1.21 1.23 1.27 1.71

1.55 25.00 0.66 0.88 0.96 1.19 1.20 1.24 1.68

1.65 25.00 0.64 0.86 0.93 1.16 1.17 1.22 1.65

1.75 25.00 0.62 0.83 0.91 1.13 1.15 1.19 1.61

1.85 25.00 0.61 0.81 0.89 1.12 1.12 1.17 1.58

1.95 25.00 0.60 0.80 0.87 1.10 1.10 1.15 1.56

1.10 30.00 0.72 0.96 1.04 1.23 1.29 1.34 1.66

1.20 30.00 0.70 0.93 1.01 1.19 1.25 1.31 1.62

1.30 30.00 0.68 0.90 0.98 1.16 1.22 1.27 1.58

1.40 30.00 0.66 0.88 0.96 1.13 1.19 1.25 1.55

1.50 30.00 0.64 0.85 0.92 1.10 1.15 1.20 1.50

1.60 30.00 0.63 0.83 0.91 1.08 1.14 1.19 1.50

1.70 30.00 0.61 0.81 0.89 1.06 1.11 1.16 1.46

1.80 30.00 0.60 0.79 0.87 1.03 1.09 1.14 1.44

1.90 30.00 0.59 0.78 0.85 1.01 1.07 1.12 1.41

1.05 32.00 0.73 0.95 1.03 1.19 1.26 1.32 1.58

1.15 32.00 0.70 0.92 0.99 1.15 1.23 1.28 1.54

1.25 32.00 0.68 0.89 0.97 1.12 1.19 1.25 1.50

1.35 32.00 0.66 0.86 0.94 1.09 1.16 1.22 1.47

1.45 32.00 0.65 0.84 0.92 1.07 1.14 1.19 1.44

1.55 32.00 0.63 0.82 0.89 1.04 1.11 1.16 1.42

1.65 32.00 0.62 0.80 0.87 1.02 1.09 1.14 1.39

1.75 32.00 0.60 0.78 0.85 0.99 1.06 1.11 1.35

1.85 32.00 0.59 0.76 0.83 0.97 1.03 1.08 1.33

1.95 32.00 0.58 0.75 0.81 0.95 1.02 1.07 1.30
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eluent
flow rate
mL/min

c(OH–) in
eluent /
mmol/L

F–/
min

Cl–/
min

NO2
–/

min
SO4

2 –/
min

Br–/
min

NO3
–/

min
PO4

3–/
min

1.00 34.00 0.74 0.96 1.04 1.18 1.28 1.33 1.57

1.10 34.00 0.71 0.93 1.01 1.15 1.25 1.30 1.53

1.20 34.00 0.69 0.90 0.98 1.11 1.21 1.26 1.48

1.30 34.00 0.67 0.87 0.95 1.08 1.18 1.23 1.45

1.40 34.00 0.65 0.85 0.92 1.05 1.15 1.20 1.42

1.50 34.00 0.63 0.82 0.89 1.02 1.11 1.16 1.37

1.60 34.00 0.62 0.81 0.88 1.00 1.10 1.15 1.36

1.70 34.00 0.60 0.79 0.86 0.98 1.07 1.12 1.33

1.80 34.00 0.59 0.77 0.84 0.96 1.05 1.10 1.31

1.90 34.00 0.58 0.75 0.82 0.94 1.03 1.08 1.28

1.05 36.00 0.71 0.92 1.00 1.11 1.22 1.28 1.46

1.15 36.00 0.69 0.89 0.97 1.08 1.19 1.24 1.42

1.25 36.00 0.67 0.86 0.94 1.04 1.16 1.21 1.38

1.35 36.00 0.65 0.84 0.91 1.02 1.13 1.18 1.35

1.45 36.00 0.64 0.82 0.89 0.99 1.10 1.15 1.32

1.55 36.00 0.62 0.80 0.87 0.97 1.07 1.12 1.30

1.65 36.00 0.61 0.78 0.85 0.95 1.05 1.10 1.27

1.75 36.00 0.59 0.76 0.82 0.92 1.02 1.07 1.24

1.85 36.00 0.58 0.74 0.80 0.90 1.00 1.05 1.21

1.95 36.00 0.57 0.73 0.79 0.88 0.98 1.03 1.19

1.00 38.00 0.73 0.94 1.01 1.11 1.25 1.30 1.45

1.10 38.00 0.70 0.90 0.98 1.08 1.21 1.26 1.41

1.20 38.00 0.68 0.88 0.95 1.04 1.18 1.23 1.37

1.30 38.00 0.66 0.85 0.92 1.01 1.15 1.20 1.34

1.40 38.00 0.64 0.83 0.90 0.99 1.12 1.17 1.30

1.50 38.00 0.62 0.80 0.87 0.96 1.08 1.12 1.26

1.60 38.00 0.61 0.79 0.86 0.94 1.07 1.12 1.25

1.70 38.00 0.59 0.76 0.83 0.92 1.04 1.09 1.22

1.80 38.00 0.58 0.75 0.81 0.90 1.02 1.07 1.20

1.90 38.00 0.58 0.73 0.80 0.87 1.00 1.05 1.17

1.05 40.00 0.71 0.90 0.97 1.05 1.19 1.24 1.35

1.15 40.00 0.68 0.87 0.94 1.02 1.16 1.21 1.31

1.25 40.00 0.66 0.84 0.91 0.99 1.13 1.17 1.28

1.35 40.00 0.64 0.82 0.89 0.96 1.10 1.14 1.24

1.45 40.00 0.63 0.80 0.86 0.94 1.07 1.12 1.22
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eluent
flow rate
mL/min

c(OH–) in
eluent /
mmol/L

F–/
min

Cl–/
min

NO2
–/

min
SO4

2 –/
min

Br–/
min

NO3
–/

min
PO4

3–/
min

1.55 40.00 0.61 0.78 0.84 0.92 1.04 1.09 1.19

1.65 40.00 0.60 0.76 0.82 0.89 1.02 1.07 1.17

1.75 40.00 0.58 0.74 0.80 0.87 0.99 1.04 1.14

1.85 40.00 0.57 0.72 0.78 0.85 0.97 1.02 1.11

1.95 40.00 0.56 0.71 0.77 0.83 0.96 1.00 1.09

1.00 42.00 0.72 0.91 0.99 1.05 1.22 1.27 1.35

1.10 42.00 0.69 0.88 0.96 1.02 1.18 1.23 1.31

1.20 42.00 0.67 0.86 0.93 0.99 1.15 1.20 1.27

1.30 42.00 0.65 0.83 0.90 0.96 1.11 1.16 1.24

1.40 42.00 0.63 0.81 0.88 0.93 1.09 1.14 1.21

1.50 42.00 0.61 0.78 0.84 0.90 1.05 1.09 1.16

1.60 42.00 0.60 0.77 0.83 0.89 1.04 1.09 1.15

1.70 42.00 0.59 0.75 0.81 0.87 1.01 1.06 1.13

1.80 42.00 0.58 0.73 0.79 0.85 0.99 1.04 1.10

1.90 42.00 0.56 0.72 0.78 0.83 0.97 1.01 1.08

1.05 44.00 0.70 0.88 0.95 1.00 1.16 1.21 1.26

1.15 44.00 0.67 0.85 0.92 0.97 1.13 1.18 1.22

1.25 44.00 0.66 0.82 0.89 0.94 1.10 1.14 1.19

1.35 44.00 0.64 0.80 0.87 0.91 1.07 1.11 1.15

1.45 44.00 0.62 0.78 0.84 0.89 1.04 1.09 1.13

1.55 44.00 0.61 0.76 0.82 0.87 1.02 1.06 1.11

1.65 44.00 0.59 0.74 0.80 0.85 0.99 1.04 1.08

1.75 44.00 0.58 0.72 0.78 0.82 0.97 1.01 1.05

1.85 44.00 0.57 0.71 0.76 0.80 0.95 0.99 1.03

1.95 44.00 0.55 0.69 0.75 0.79 0.93 0.97 1.01

1.10 46.00 0.68 0.86 0.92 0.96 1.13 1.18 1.19

1.20 46.00 0.66 0.84 0.91 0.94 1.12 1.17 1.18

1.30 46.00 0.64 0.81 0.88 0.91 1.09 1.14 1.15

1.40 46.00 0.63 0.79 0.86 0.89 1.06 1.11 1.12

1.50 46.00 0.61 0.76 0.83 0.86 1.02 1.07 1.08

1.60 46.00 0.60 0.75 0.82 0.85 1.01 1.06 1.07

1.70 46.00 0.58 0.73 0.79 0.82 0.99 1.03 1.04

1.80 46.00 0.57 0.72 0.78 0.81 0.97 1.01 1.02

1.90 46.00 0.56 0.70 0.76 0.79 0.95 0.99 1.00

1.00 50.00 0.70 0.88 0.95 0.97 1.16 1.19 1.21
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eluent
flow rate
mL/min

c(OH–) in
eluent /
mmol/L

F–/
min

Cl–/
min

NO2
–/

min
SO4

2 –/
min

Br–/
min

NO3
–/

min
PO4

3–/
min

1.10 50.00 0.68 0.85 0.92 0.93 1.13 1.15 1.18

1.20 50.00 0.66 0.82 0.89 0.90 1.09 1.11 1.14

1.30 50.00 0.64 0.80 0.86 0.87 1.07 1.08 1.11

1.40 50.00 0.62 0.78 0.84 0.85 1.04 1.05 1.08

1.50 50.00 0.60 0.75 0.81 0.82 1.00 1.01 1.05

1.60 50.00 0.59 0.74 0.80 0.81 0.99 1.00 1.03

1.70 50.00 0.58 0.72 0.78 0.79 0.96 0.98 1.01

1.80 50.00 0.57 0.70 0.76 0.77 0.94 0.95 0.99

1.00 55.00 0.66 0.70 0.86 0.93 1.11 1.14 1.18

1.10 55.00 0.67 0.83 0.89 0.90 1.07 1.10 1.15

1.20 55.00 0.65 0.81 0.86 0.87 1.03 1.07 1.11

1.30 55.00 0.63 0.78 0.83 0.84 1.00 1.04 1.08

1.40 55.00 0.62 0.76 0.82 0.82 0.98 1.01 1.05

1.50 55.00 0.60 0.73 0.79 0.79 0.94 0.98 1.02

1.60 55.00 0.59 0.73 0.77 0.78 0.93 0.97 1.01

1.05 58.00 0.68 0.83 0.87 0.89 1.03 1.09 1.13

1.15 58.00 0.66 0.80 0.84 0.86 0.99 1.05 1.10

1.25 58.00 0.64 0.78 0.82 0.84 0.97 1.02 1.06

1.35 58.00 0.62 0.76 0.79 0.81 0.93 1.00 1.04

1.45 58.00 0.60 0.74 0.77 0.79 0.91 0.97 1.01

1.55 58.00 0.59 0.72 0.76 0.77 0.89 0.94 0.98

1.65 58.00 0.57 0.70 0.74 0.75 0.87 0.92 0.96

1.00 60.00 0.69 0.85 0.89 0.91 1.04 1.11 1.16

1.10 60.00 0.67 0.82 0.86 0.88 1.00 1.08 1.12

1.20 60.00 0.65 0.79 0.83 0.85 0.97 1.05 1.09

1.30 60.00 0.63 0.77 0.80 0.83 0.94 1.02 1.06

1.40 60.00 0.61 0.75 0.78 0.80 0.92 0.99 1.03

1.50 60.00 0.59 0.72 0.75 0.78 0.88 0.96 1.00

1.60 60.00 0.58 0.71 0.74 0.77 0.87 0.94 0.98


