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A B S T R A C T

Conduction of tele-3D-computer assisted operations as well as other telemedicine procedures often requires highest
possible quality of transmitted medical images and video. Unfortunately, those data types are always associated with
high telecommunication and storage costs that sometimes prevent more frequent usage of such procedures. We present a
novel algorithm for lossless compression of medical images that is extremely helpful in reducing the telecommunication
and storage costs. The algorithm models the image properties around the current, unknown pixel and adjusts itself to the
local image region. The main contribution of this work is the enhancement of the well known approach of predictor
blends through highly adaptive determination of blending context on a pixel-by-pixel basis using classification tech-
nique. We show that this approach is well suited for medical image data compression. Results obtained with the proposed
compression method on medical images are very encouraging, beating several well known lossless compression methods.
The predictor proposed can also be used in other image processing applications such as segmentation and extraction of
image regions.
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Introduction

Many applications such as medical imaging, high pre-
cision and 3D image analysis1,2, visualization, tissue mo-
deling, transmission of medical images, image storage
and archival, which provide scientific expertise necessary
for developing successful 3D-computer assisted surgery
(3D-CAS), Tele-3D-CAS, and virtual reality (VR) applica-
tions, deal with a vast amount of image data. The men-
tioned technologies represent a basis for realistic simula-
tions that are useful in many areas of human medicine,
and can create an impression of immersion of a physician
into a non-existing, virtual environment. Such an im-
pression of immersion can be realized in any medical in-
stitution using advanced computers and computer net-
works that are required for interaction between a person
and a remote environment, with the goal of realizing
tele-presence3. All those applications and many others

demand that no loss occurs in the process of compres-
sion, which implies that lossless image compression tech-
niques must be employed.

An important aspect in the design of the lossless com-
pression algorithm is separation of the model and the
coder4. The role of the coder is to encode the information
supplied by the model. The goal of the model is to detect
and remove redundancy in the information source and to
supply the coder with decorrelated data. The more re-
dundancies are detected and removed by the model, the
better compression is achieved. Optimal coding is well
known in the form of arithmetic coding5. This means
that the main problem is the design of effective model for
the data under consideration.
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Collaborative work

Before the introduction of DICOM standards, image
recordings were stored on films, where the information
obtained from the diagnostic device was in part lost. In
ideal conditions, sixteen different image levels could be
distinguished on films at the most. When film images
were to be stored in computer systems, films had to be
scanned, thus inevitably losing a part of significant data
and probably introducing some unwanted artifacts. The
level setting and window width to be observed on the im-
ages could not be subsequently changed. Visualization of
the image on the diagnostic device monitor was of a con-
siderably higher quality, thus it was quite naturally used
for record receipt and storage in computer media. Video
image allows for the receipt of 256 different levels at the
most. Neither it is possible to subsequently modify the
level setting and window width to be observed on the ima-
ges that have already been stored in the computer system.

When stored in computer systems by use of DICOM
protocol, images are stored in the form generated by the
diagnostic device detector. These image recordings can
then be properly explored by use of powerful computer
systems. This is of special relevance when data in the
form of images are to be used for complex examinations
and testing, or in preoperative preparation where rapid
and precise demarcation between the disease involved
and intact tissue is required. It is also very important for
the images to be visualized in various forms and from dif-
ferent aspects and then – which is most demanding in-
deed – to develop spatial models to aid the surgeon in
preparing and performing the procedure as well as in
postoperative analysis of the course of the procedure.

The entire operative procedure can be simulated and
critical areas avoided during the real procedure by em-
ploying real patient images in the operation preparatory
phase using complex spatial models and simulated opera-
tive field entry (Virtual Endoscopy, Virtual Surgery)2.
3D-CAS, VR, and Tele-3D-CAS systems can be used for
education, assessment of work skills, training, simula-
tion, 3-D visualization, computer-aided design, teleope-
ration, and telemanipulation. If we look at various appli-
cation areas, we see that one of the more popular VR
application areas is medicine. A specific area of surgery is
minimally invasive surgery (MIS). Learning an MIS
technique is more difficult than learning open surgery
techniques because there is no tactile information, an in-
direct field of view is available, and there are difficulties
in hand-eye coordination. 3D-CAS systems may be used
to aid delivery of surgical procedures. In fact, the most
useful systems are augmented reality systems, which
combine patient image with images obtained using vari-
ous medical imaging modalities such as CT, MR, and ul-
trasound.

During the course of our Three-Dimensional Com-
puter Assisted Functional Endoscopic Sinus Surgery
(3D-C-FESS) method development, a variety of program
systems were employed to design an operative field mo-
del by use of spatial volume rendering techniques. Ini-

tially, the modeling was done by use of the VolVis, Vol-
pack/Vprender and GL Ware programs.

Computer assisted telesurgery
One of the simplest telemedicine applications is medi-

cal teleconsultation, where physicians exchange medical
information, over computer networks, with other physi-
cians in the form of image, video, audio, and text. Tele-
consultations can be used in radiology, pathology, surge-
ry, and other medicine areas. One of the most interesting
telemedicine applications is telesurgery. Telesurgery
(such as www.mef.hr/modernrhinology) is a tele-presence
application in medicine where the surgeon and the pa-
tient are at different locations, but such systems are still
in an early research phase. Patients, who are too ill or in-
jured to be transported to the hospital, may be operated
remotely. In all these cases, there is a need for a surgeon
specialist who is located at some distance.

Modern equipment such as the endo-micro cameras
show the operative field on the monitor mounted in the
operating theater; however, the image can also be trans-
mitted to a remote location by use of video transmission.
The latest computer technology enables receipt of CT im-
ages from a remote location, examination of these im-
ages, development of 3D spatial models, and transfer of
thus created models back to the remote location. All
these can be done nearly within real time. These proce-
dures also imply preoperative consultation. During the
surgery, those in the operating theater and remote con-
sultants follow on the patient computer model the proce-
dure images, the »live» video image generated by the en-
doscopic camera6, and instrument movements made by
the remote surgeon. The main idea considering the use of
computer networks in medicine is: it is preferable to
move the data rather than the patient.

Materials and Methods

Predictive image coding in which the prediction error
of the current pixel is coded has been shown to be the
most effective technique in lossless image compression.
Using prediction, the image data are decorrelated prior
to the entropy coding so that better compression is
achieved. In the framework of sequential, backward ada-
ptive lossless image compression, predictive image cod-
ing can be formulated as composed of the following steps:
1. Prediction of the current pixel based on the casual set

of surrounding pixels – pixel prediction.
2. Determination of the conditional probabilistic context

in which the current prediction error occurs – error
modeling7.

3. Coding of the prediction error in the detected proba-
bilistic context – entropy coding.

Figure 1 shows the main blocks of the predictive im-
age compression method proposed. All building blocks
will be explained in the following subsections.

An important property of image data is the high de-
gree of correlation among neighboring pixels so that it is
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possible to decorrelate samples using some sort of pixel

prediction. If the predictor can effectively model this spa-

tial correlation among neighboring pixels, then the re-

maining prediction error will be mostly decorrelated and

easily coded with an entropy coder. On the other hand, it

is well known that image data are nonstationary, which

means that the properties of image regions vary all over

the image8. Accordingly, if the predictor is supposed to

predict well in various image regions, it is necessary to

switch its own properties so that it can adjust to the

changing image characteristics. Another assumption of

local stationariness is very well applied to the image

data. This means that for arbitrarily small image re-

gions, the predictor adjusted to the dominant local prop-

erty will predict well inside the region, but it has to be

highly adaptive to varying image regions.

Image is treated as two-dimensional array I(x,y) of

pixel grey intensity values with the width W and the

height H, where 0 £ x < W and 0 £ y < H. Pixels are ob-

served sample by sample in raster scan order, from top to

bottom, left to right. In the assumed backward adaptive

approach, the encoder is allowed to use only past infor-

mation that is also available to decoder. This means that

to form the prediction only previously observed pixels are

used, as shown in Figure 2. In fact, only a small subset of

previously encoded pixels is used to form the causal tem-

plate �(x, y). Figure 2 is an enlarged segment from Fig-

ure 1 and depicts the main elements of the predictor

which uses causal context of surrounding pixels W(x, y)

for the prediction of current pixel I(x, y):

(1)

For convenience, the compass point notation for sur-

rounding pixels is used, for example N denotes North

pixel, W denotes West pixel from the current pixel, etc.

Instead of coding the real pixel value I(x, y), the pixel pre-

diction Î x y( , ) is performed and the prediction error

e x y I x y Î x y( , ) ( , )– ( , )� is produced.

Typical image can be treated as being composed of re-

gions with varying dominant properties. Those properties

pose different and conflicting constraints on the predic-

tion function. If we consider linear prediction function:

(2)

Then we can put the following constraints on the pre-

dictor coefficients ai,j depending on the dominant prop-

erty of the current region9. Smooth regions in which the

intensity of pixel does not change require that ai j,� � 1.

On the other hand, for planar region it is required for at

least one of ai,j to be negative so that the gradient can be

estimated. Noisy regions require that the least magni-

tude of noise is introduced into the prediction, which im-

plies that ai j,� � 1 should be as small as possible. Edges

and textured regions comprise the most important visual

part of images9. Edges require some kind of mechanism

in the predictor to provide the detection and orientation

of the edge. Textures are most difficult to model and for

the sake of prediction they can be considered as a combi-

nation of noise and edges.

We modeled image regions as a combination of the

above structures with the presence of the dominant

property. Therefore, the choice for the predictor to sat-

isfy given constraints is rather complex and demanding

and an adaptation mechanism is required. The best

choice for the dominant property in case of a blind model

is to assume that the noise dominates and to take corre-

sponding constraint as suggested by Seeman et al.10.

However, the effectiveness of any prediction scheme de-

pends on its ability of adapting to different image region

properties. This precludes the use of static predictors if

efficient prediction is required. Typical heuristically tu-

ned switching predictors use a set of static prediction

functions and heuristics to determine which function

will be used for the prediction of the current pixel. Such

predictors include GAP (CALIC algorithm11), MED (LO-
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I(x,y)=f(W(x,y)).ˆ

i,j
I(i,j)ÎW

I(x,y)=f(W(x,y))= a ×I(i,j),ˆ �

Fig. 1. Block scheme of proposed compression algorithm.

Fig. 2. Pixel prediction.



CO-I, JPEG-LS standard12), etc. The main drawback of
this approach is the lack of robustness in the presence of
nontrivial image regions. Another approach is to use
adaptive predictor as in the prediction scheme proposed.
There is a big spectrum of adaptive predictors with vari-
ous mechanisms of adaptation and complexities such as
LS-based predictors13, blending predictors9. The aim of
the prediction scheme proposed in this paper is to predict
well in all various image regions with moderate computa-
tional complexity.

Classification and blending predictor CBP

The predictor proposed is based on the idea of blend-
ing predictors from Seeman and Tischer8, which is fur-
ther extended with dynamic classification of predictor
context on a pixel by pixel basis. The set of predictors
F=¤f1,f2,...,fN¥ is composed of N static predictors adjusted
to predict well in the presence of specific property. For ex-
ample, simple predictor W predicts well in the presence
of sharp horizontal edge. We set F to be F=¤N,W,
NW,NE,N+W–NW,Gw,GN¥ where GW=2N–NN and GN=
2W–WW.

The classification process determines the set of neigh-
boring pixels on which the blending of F is performed. It
is similar to the initial step of VQ design substantially
simplified in order to be usable in symmetric, backward
adaptive algorithm14.

Our predictors can be described as follows: every pixel
in the image has its own template VT, which is composed
of four already observed neighboring pixels, as shown in
Figure 3, enlarged segment. On the large window of pre-
viously observed pixels such as shown in Figure 3 we will
find M pixels with the most similar template to the tem-
plate of the currently unknown pixel (in our experiments
we set M to be seven). We call the process classification
and the result the set of similar pixels. The similarity is
defined as Euclidean distance between templates. Figure
3 shows the possible outcome of the classification: seven
similar pixels and their templates.

The next step is to train our set of predictors F on the
chosen set of similar pixels. If the predictor f Fk � pre-
dicts poorly on the set of classified similar pixels, then it

will get large penalty Gk, but if it predicts well, then he
will get small penalty. After the complete process for ev-
ery predictor and every pixel from the chosen set is done,
we have a set of predictors F=¤f1,f2,...,fN¥ and set of pen-
alties ¤G1,G2,...,GN¥ and the final prediction will be:

(3)

The prediction for the current pixel is the weighted
sum of predictions of all the predictors from F with
weights inversely proportional to the corresponding pen-
alties. The penalty of predictor reflects its efficacy on the
blending context. If the predictor predicts well, its contri-
bution in the final prediction will be higher, thus it has
more chance to produce precise current prediction. The
predictors that do not predict well on the current blend-
ing context will eventually be blended out by associated
large penalties. The denominator in (3) normalizes the fi-
nal prediction.

Finally, we track the efficiency of our final predictor
from (3) and record its typical error as an average sum of
errors on the classified set of pixels. This typical error is
used for refinement of our prediction. We call this step
error correction.

Our predictors allow other nondominant properties to
be included (modeled) in the prediction, although with
less contribution. This is crucial difference compared
with switching predictors that do not have the capability
to model nontrivial image structures with a mixture of
properties. Note that pixels from the search window that
do not belong to the region with the same dominant
property as the region in which the current pixel resides
will not be included in the current cell and thus they will
not be part of the blending context. In case that one of
the penalties is zero, the corresponding predictor is used
for prediction without any other additional steps. In this
way, the perfect predictor gets the chance to predict the
current pixel. On the other hand, if all the penalties dif-

J. Knezovi} et al.: Lossless Compression of Medical Images, Coll. Antropol. 31 (2007) 4: 1143–1150

1146

Fig. 3. The set of similar pixels to the current pixel.
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fer from zero, we get the averaging prediction through
the blending process. This is the good choice, since the
most important property that is to be assumed for im-
ages is the presence of noise9.

Contextual error modeling

Although the prediction step removes statistical re-
dundancies within image data, in the error image there
are remaining structures that cannot be completely re-
moved using only the previously applied prediction step7.
Those structures are removed using contextual modeling
of prediction error, where the context or the state is the
function of previously observed pixels, errors or any
other relevant variables. As reported by Wu, the heuris-
tic method that uses both previous pixel template and
causal error energy estimate is best suited for this pur-
pose5. Wu’s contextual model is composed of two different
submodels: (1) a model with a large number of states
that is used for prediction error feedback, and (2) a model
with a low number of states used for error probability
estimation. On the other hand, Wu’s predictor is a heu-
ristic predictor with a low degree of adaptation, and our
proposal is a highly adaptive predictor with already built
in error feedback mechanism (error correction step in
the prediction phase). This implies that our mechanism
needs only a small contextual model for estimation of
symbol probabilities. Our contextual model is built as
follows: besides the high correlation with texture pattern,
current prediction error is also highly correlated with the
errors on neighboring pixels. This is modeled using the
error discriminant on previous pixels: ∆ � � �d d eh v w2 ,
where d W WW N NW N NEh � � �– – – and dv =
� � �W NW N NN NE NNE– – – are horizontal and
vertical gradients around the current pixel, and ew is the
prediction error on the west pixel W. D is uniformly
quantized into eight levels to produce the state of the
model. Every state contains a histogram table which is
used for probability estimation of the prediction error in
the current state. Because of the context dilution effect,
this context is required to have a small number of states.

Entropy coding of prediction error
The final step of the image compression algorithm

proposed is entropy coding of the resulting prediction er-
ror. For the given error symbol and given probability esti-
mate computed from the contextual state, the codeword

is computed by the entropy coder. This codeword is out-
put as the final result of pixel compression process. Our
proposal uses highly efficient implementation of arith-
metic coding5.

Past experience and system implementation
In the late 1990s, a scientific research rhinosurgical

team was organized at University Department of ENT,
Head & Neck Surgery, Zagreb University School of Medi-
cine and Zagreb University Hospital Center in Zagreb,
who have developed the idea of a novel approach in head
surgery. This computer aided functional endoscopic sinus
microsurgery has been named 3D-C-FESS. The first
3D-C-FESS operation in Croatia was carried out at the
[alata University Department of ENT, Head & Neck
Surgery in a 12-year-old child inflicted gunshot wound in
the left eye region (Figure 4).

Status: gunshot wound of the left orbit, injury to the
lower eyelid and conjunctiva of the left eye bulb. Massive
subretinal, retinal and preretinal hemorrhage. The vitre-
ous diffusely blurred with blood. The child was blinded
on the injured eye. Six years after the 3D C-FESS sur-
gery, the status of the left eye was completely normal, as
well as the vision, which was normal bilaterally.

With due understanding and support from the Uni-
versity Department of ENT, Head & Neck Surgery, Zag-
reb University Hospital Center, and Merkur University
Hospital, the scientific research rhinosurgical team from
the [alata University Department of ENT, Head & Neck
Surgery organized and successfully conducted the first
distant radiologic-surgical consultation (teleradiology) with-
in the frame of the 3D-C-FESS project. The consultation
was performed before the operative procedure between
two distant clinical work posts in Zagreb ([alata Uni-
versity Department of ENT, Head & Neck Surgery and
Merkur University Hospital) (outline/network topology).
In 1998, and on several occasions thereafter, the team
conducted a number of first tele-3D-computer assisted
operations as unique procedures of the type not only in
Croatia but worldwide1–3,6,15

Results and Discussion

We have designed a complete lossless image compres-
sion algorithm that incorporates CBP predictor, contex-
tual error modeling described in this paper and arithme-

J. Knezovi} et al.: Lossless Compression of Medical Images, Coll. Antropol. 31 (2007) 4: 1143–1150

1147

Fig. 4. Foreign body in the region of the left eye.



tic coding. We have named it Classification and Blending
Predictive Coder (CBPC). Table 1 shows the results of
our CBPC coder compared with the results of popular

lossless coders for our test set of medical images shown
in Figure 516,17.

Those images are grey level images with 8 bits per
pixel precision. The first column shows the bit-rates of
the Context-Based, Adaptive, Lossless Image Coder (CA-
LIC) algorithm, the second column the JPEG-LS results,
and the third column shows the results of JPEG 2000
lossless compression that uses reversible wavelet trans-
form18. The CBPC outperforms all other coders resulting
in the best average bit rate with comparable complexity
(Figure 5).

Conclusion

The results obtained with our proposed compression
algorithm are encouraging. Average telecommunication
and storage costs are cut to 1/3 compared to old fash-
ioned plain systems. After testing the algorithm on a re-
duced set of images we have opened the possibility to ap-
ply the same to 3D models and other images that are
used in new operation procedures such as images from
Figure 6. As we know, the use of the latest program sys-
tems enables development of 3D spatial models (Figure
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TABLE 1
MEDICAL IMAGES – COMPLETE COMPRESSION RESULTS

Image
CALIC
(bps)

JPEG-LS
(bps)

JPEG
2000R (bps)

CBPC
(bps)

CR chest 2.35 2.39 2.52 2.27

CT abdomen 2.27 1.89 2.59 1.92

CT brain 1.24 1.29 1.42 1.10

CT limb 2.21 2.34 2.38 2.17

MR head 1 4.27 4.44 4.47 4.18

MR head 2 4.44 4.62 4.71 4.33

MR knee 4.98 5.08 5.11 4.92

angiography 3.70 3.67 3.97 3.62

RTG colon 3.21 3.20 3.45 3.10

Mean 3.18 3.21 3.40 3.07

CALIC – context-based adaptive lossless image coder,
CBPC – classification and blending predictive coder

Fig. 5. Test set of medical images.



6), exploration in various projections, simultaneous pre-
sentation of multiple model sections and, most impor-
tant, model development according to open computer
standards (Open Inventor). Such a preoperative prepara-
tion can be applied in a variety of program systems that
can be transmitted to distant collaborating radiological
and surgical work sites for preoperative consultation as
well as during the operative procedure in real time16

(telesurgery). For realistic Tele-3D-CAS surgery as well
as for appropriate simulations it is necessary for the com-
puter to generate at least 30 such images per second,
which imposes strong requirements to computer process-
ing power15. By applying our proposed algorithm we can
enable those procedures to be performed and to be per-
formed more efficiently. Every model of the anatomy
and/or pathology in medical applications will enable sim-
ulation of changes that the tissue undergoes when com-
pressed, stretched, cut, or palpated.

The proposed approach of modeling the image as com-
posed of regions with a mixture of dominant and nondo-

minant properties has been shown to be efficient for
lossless image compression. On the other hand, it should
be noted that the increase in compression performances
comes with the increase in computational complexity.
Our predictor is moderately more complex than predic-
tors used in contemporary lossless compression algo-
rithms such as CALIC and JPEG-LS. We believe that our
proposed predictor is less complex than the predictors
that can be found in newer proposals for lossless com-
pression of images and are based on the least squares
approach13. Also, the complexity of the predictor pro-
posed can be tuned for both goals: better compression
and faster time by changing the parameters described
earlier. Those parameters can be set on an image basis.
The lossless compression method proposed can be easily
incorporated into a more general medical image storing
and retrieval system.
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APLIKACIJA NOVE METODE KOMPRESIJE MEDICINSKIH SNIMAKA BEZ GUBITAKA,
KORI[TENJEM PREDIKCIJE I KONTEKSTUALNOG MODELIRANJA

S A @ E T A K

Provo|enje tele-3D ra~unalom potpomognutih zahvata kao i druge telemedicinske procedure ~esto zahtjevaju najve-
}u mogu}u kvalitetu medicinskih snimki i videa. Na`alost, takve vrste podataka su uvijek vezane uz visoke telekomuni-
kacijske tro{kove i tro{kove pohrane, koji ponekad sprje~avaju {iru uporabu ovih procedura. Ovdje predstavljamo novi
algoritam za kompresiju bez gubitaka medicinskih snimki, koji je od velike pomo}i u smanjenju tro{kova. Glavni dopri-
nos ovog rada je pobolj{anje ve} poznatih modela. Pokazali smo da je ovaj pristup primjeren za kompresiju medicinskih
slika. Rezultati dobiveni predlo`enim na~inom kompresije su vrlo ohrabruju}i i pobijaju nekoliko dobro poznatih na~i-
na kompresije bez gubitaka. Predlo`eni prediktor se tako|er mo`e koristiti i u drugim aplikacijama za obradu slika, kao
{to je segmentiranje i ekstrakcija slikovnih podru~ja.
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