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Summary

Capability of evolutionary neural network (ENN) based QSAR approach to direct the descriptor selection
process towards stable descriptor subset (DS) composition characterized by acceptable generalization, as
well as the influence of description stability on QSAR model interpretation have been examined. In order to
analyze the DS stability and QSAR model generalization properties multiple random dataset partitions into
training and test set were made. Acceptability criteria proposed by Golbraikh et al. [J. Comput.-Aided Mol.
Des., 17 (2003) 241] have been chosen for selection of highly predictive QSAR models from a set of all
models produced by ENN for each dataset splitting. All QSAR models that pass Golbraikh’s filter gen-
erated by ENN for each dataset partition were collected. Two final DS forming principles were compared.
Standard principle is based on selection of descriptors characterized by highest frequencies among all
descriptors that appear in the pool [J. Chem. Inf. Comput. Sci., 43 (2003) 949]. Search across the model
pool for DS that are stable against multiple dataset subsampling i.e. universal DS solutions is the basis of
novel approach. Based on described principles benzodiazepine QSAR has been proposed and evaluated
against results reported by others in terms of final DS composition and model predictive performance.

Nomenclature: QSAR – quantitative structure activity relationship; descriptor – attribute; molecule – ob-
ject; input variable – independent variable; output variable – dependent variable; m–n–p – fully connected
NN topology with biases where input layer contains m input neurons hidden layer contains n hidden
neurons and output layer contains p neurons; ENN – evolutionary neural networks; GNN – genetic neural
networks; NN – neural networks; DS – descriptor subsets; LOO – leave one out; EA – evolutionary
algorithm; CPU – central processing unit; PC – personal computer; FF – fitness function, also called
objective or merit function; MSE – mean squared error; SSE – sum of squared errors; RMSE – root mean
squared errors; CV – coefficient of variation (relative standard deviation); LMO – leave many out; ROC –
receiver operating characteristic; SCG – scaled conjugated gradient; SNNS – Stuttgart neural network
simulator; GABA – c-aminobutiric acid; IC – inhibitory concentration; ÆXæ – average X value; ntot – total
number of molecules; npart – number of complete dataset partitions into training and external validation
set; ntest – number of external validation set molecules; nsubd – number of internal validation sets;
T – critical npart fraction corresponding to number of complete dataset partitions for which specific DS
fails to pass at least one of the predictive performance filters; p(a) – probability of type I statistical error;
p(b) – probability of type II statistical error
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Introduction

ENN and genetic neural networks (GNN) are
frequently used evolutionary algorithm (EA)
based descriptor selection methods that belong
to a group of feature selection/prediction hybrids
called wrappers [1, 2]. It has been shown on a
number of different QSAR problems that these
wrappers could efficiently lower external test set
and/or leave-one-out (LOO) prediction error
[3–12]. Subject that has not been thoroughly
documented before is final ENN/GNN QSAR
model interpretation. Most of the authors use
only a few best performing QSAR models in
terms of preselected fitness from the last ENN/
GNN generation into consideration [3–6, 12].
This is not the best selection due to a number of
reasons. First of all, such approach results in
different models for different random generator
seed values used during ENN/GNN training [4].
This raises a question about selection of final
QSAR model among different final ENN/GNN
solutions corresponding to different random
seeds. Moreover, different dataset partitions i.e.
different random subsamplings [13] will also cause
different final QSAR models i.e. description
instability [11, 14]. This behavior, also known as
‘Rashomon effect’ [15] is well-documented prop-
erty of both, feature selection methods and neural
networks (NN) [16], as well as other prediction
tools like random forests [17]. Many authors used
model ensembles for improvement of external
validation and proved adequacy of this approach
[11, 16–19]. But such improvement of external
validation results leads to very complex model
interpretation [15, 16].

According to the resampling statistics litera-
ture three levels of statistical inference are
possible: population statistics determination
implemented by bootstrap procedures, determi-
nation of causal inference that is implemented
by rerandomization and analysis of description
stability that is implemented by cross-validation
[14]. The first generalization level could hardly
be achieved in QSAR since it is not possible to
make random sampling across complete popu-
lation of all molecules that are characterized by
certain ranges of property values. All members
of such population are not known. Without
detailed population description and possibility
to randomly select population members for

population statistics determinations this type of
statistical inference is not possible. However,
applications of the other two levels of statistical
inference are frequently used in QSAR studies.
Rerandomization doesn’t pose a request for
random sampling across complete population
of some type of molecules. Instead, it could be
done on a non-random sample that is the case
in all QSAR studies. The basis of the procedure
is random permutation of output variable values
and analysis of external validation results of
such constructs. This method is known among
QSAR community as y-scrambling [20, 21].
Unfortunately, according to literature it has
been rarely done in appropriate way [21].
Instead of analysis of y-scrambling influence
on the final QSAR model analysis of influence
on complete wrapper training should be done.
This is the main reason why this type of
statistical inference is not easy to achieve when
one uses very CPU time demanding wrappers
like ENN or GNN.

The last level of statistical inference that could
be easily misidentified as generalization is stability
of description i.e. model stability. Generalization
and, sometimes description stability analysis have
been implemented in QSAR by different cross-
validation methods. The most frequently used
cross-validation method in ENN/GNN based
QSAR is LOO. During the last few years the
most important cross-validation method became
predictive performance analysis based on test set
also known as hold out set obtained by dataset
partition (Figure 1). According to statistical lit-
erature recommended percentage of test objects
needed for appropriate external cross-validation
is approximately 50% of the complete dataset
[14]. This percentage is rarely possible to use in
QSAR external validation since the number of all
molecules involved in the study is frequently very
small. Computational community proposed
somewhat lower percentage of test objects needed
for correct analysis of model generalization and
stability. According to Yao and Liu [19] and
Kohavi [22] 25–33% of complete dataset objects
should be placed in the test set if one wants to
achieve appropriate generalization and/or
description stability estimation. External valida-
tion result comparison makes important differ-
ence between generalization and stability analysis.
It is easy to find single dataset splitting for which
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one gets acceptable generalization, especially if
the number of test set elements (ntest) is small.
But only multiple external validation results
could provide realistic picture [13, 16, 23, 24].
Random subsampling based on multiple parti-
tions of the dataset into training and test set
represents extensive application of cross-valida-
tion that has been introduced to QSAR by
Mattioni et al. [11] and to related fields by Leardi
and Gonzales [20]. Stability of solutions against
random subsampling could be referred to consis-
tency of QSAR generalization results. In case of
feature selection wrappers it could also be
referred to consistency of models’ DS composi-
tion. Only DS that exist in solution pools
corresponding to most of or all examined split-
tings could be treated as non-random and for
these DS we introduce term the universal solu-
tions. If such solutions are also characterized
by acceptable and consistent generalization it
makes search for such solutions an interesting
task.

It has been shown that LOO tends to be too
optimistic predictive performance estimator [25,
26]. Besides, LOO used as wrapper FF provides
only internal model validation. Therefore internal
and external validation of QSAR model based on
single or multiple hold out test set prediction
results became a standard tool for ENN/GNN
training and performance evaluation in recent

years [11, 12, 25–27]. We do agree with reviewers
comment that multiple leave-many-out (LMO)
external validation could lead to underfitting due
to removal of significant proportion of molecules
from already small dataset [28]. However, multi-
ple LMO was selected for both, nested internal
and external predictive performance measure. The
reason for that is its ability to detect model
overfitting even when analyzed set contains a lot
of very similar molecules. Namely, if a lot of
clones exist in complete dataset multiple random
removal of significant number of molecules for
internal and external testing leads to inclusion of
all or most of the clones into test sets at least in
some instances. In case of overfitting such test
sets cause significant predictive performance dete-
rioration. Moreover, predictive performance var-
iation is expected to be significantly increased.
The more partitions the higher probability of
such events. In the following research approxi-
mately 44% of complete dataset is set aside for
internal and external tests and the dataset split-
ting is repeated 10–60 times.

If one wants to do evolutionary QSAR model
selection based on separate set predictive perfor-
mance followed by correct external validation at
least three subsets are needed. Namely, training
set, which is subdivided into learning and internal
validation subsets and external test set (Figure 1).
Internal validation subset is used as FF during
wrapper training. Test set predictive performance
i.e. external validation enables selection of the best
model or models among a set of different model
candidates only after the wrapper training phase
has been done. This scheme represents a kind of
nested form of model validation.

Among different measures of test set predictive
performance i.e. model acceptability multicriterial
approach proposed by Golbraikh et al. [27] is used
(Equations 1–7):

q2 > 0:5; ð1Þ

q2 ¼ 1�
Pntot

i¼1 ðyi � ŷiÞ
Pntot

i¼1 ðyi � yiÞ
ð2Þ

in all equations y represents output variable
(pharmacological activity in this particular case),
while ŷ represents pharmacological activity pre-
diction. Signed variables represent corresponding
averages (within the text averages are represented

Figure 1. Dataset partition protocol.
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by ‘Æ æ’); ntot is the total number of objects, in our
case molecules in complete dataset;

R2 > 0:6; ð3Þ

R2 ¼
Pntest

i¼1 ðyi � yÞ � ðŷi � ŷÞ
� �2

Pntest
i¼1 ðyi � yÞ2 �

Pntest
i¼1 ðŷi � ŷÞ2

; ð4Þ

R2 � R2
0

R2
<0:1: ð5Þ

R2
0 represents coefficient of determination

corresponding to linear regression equation
y ¼ f ðŷÞ ¼ Kŷ;

0:85 � K � 1:15; ð6Þ

R2
0 � R020

�
�

�
�<0:3: ð7Þ

R020 represents coefficient of determination corre-
sponding to equation ŷ ¼ f ðyÞ ¼ K 0y.

It could be seen that Golbraikh’s criteria
involve both, LOO q2 and hold out test set R2

based validation. Most authors use only LOO q2

or external test set R2 coefficients [3, 6] but
Todeschini et al. [29] and Golbraikh et al. [27]
described deficiencies of such approaches and
proposed two multicriterial approaches.

In order to reach highest possible external
validation results two ingredients are crucial:
efficient learning algorithm and internal FF that
perfectly correlates with external validation re-
sults. Unfortunately, such internal FF generally
does not exist [19, 24]. Among different internal
FF some FF provide better correspondence with
external validation results than others. It has been
shown on some QSAR problems that certain
wrappers that use validation subset based FF
produce better external validation results than
their counterparts that use FF based on simple
root mean squared error (RMSE) calculated for
complete training set [23, 24]. Among different
wrapper FF that use internal validation subset
prediction quality for QSAR model selection
multiple LMO RMSE based FF [21, 23, 24]
approach has been selected. Selected FF is based

on a large number of random subdivisions (nsubd)
of training set into learning and internal validation
subset. The most of QSAR datasets are quite small
and molecules taken into account make scarce
coverage of the descriptor and/or output variable
spaces. In other words some property value ranges
are overrepresented and some property value
ranges are underrepresented in the dataset. This
problem becomes even more pronounced when
dataset partition is needed. Large nsubd could
minimize the influence of uneven distribution of
molecules between learning and validation set that
could be caused by small number of molecules.
Moreover, Baumann reported that chance corre-
lation is unlikely if one uses this type of FF [24].
Selected LMO FF is represented by Equation 8:

FF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pnsubd

i¼1
Pnval

j¼1 ðyi;j � ŷi;jÞ2

nsubd � nval

s

; ð8Þ

where nval stands for number of internal valida-
tion set molecules.

During the preparation for this study we also
examined some of existing LMO based FF alter-
natives [9, 12, 30]. Although less computationally
demanding and characterized by similar average
generalization, application of analyzed alternatives
led to a smaller number of eligible models prob-
ably due to a single preselection of internal
validation set elements. Therefore multiple LMO
type of FF was selected.

Random subsampling, large number of differ-
ent ENN/GNN solutions and application of
acceptability criteria led us in a position to
propose novel QSAR model building principle
and final DS selection. Our primary goal was to
produce universal if not unique interpretation of
QSAR. This means that small number of DS or
even only one final DS was searched for. One way
to do that is to apply acceptability criteria on all
wrapper results. Application of acceptability cri-
teria ensures model pool shrinkage as well as
selection of solutions characterized by acceptable
predictive performance. This way obtained set of
eligible solutions could be reduced further by the
application of stability filter i.e. selection of those
DS that exist in all eligible solution subsets
corresponding to different complete dataset parti-
tions. Same as frequency of descriptor appearance
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in eligible models [11, 31], stability of acceptable
DS against random subsampling represents basis
for small QSAR model pool selection that conse-
quently simplifies model interpretation. The pre-
requisite for the success of such double filter based
process is existence of large number of QSAR
models characterized by acceptable predictive
performance that are produced by applied wrap-
pers. ENN/GNN, wrapper that could produce
multitude of QSAR models, equipped with suit-
able internal validation like multiple LMO FF
that resembles external DS stability analysis
itself seems to be appropriate wrapper candidate.
Figure 2 describes model selection protocol.

When stable and/or interpretable models have
been found one more QSAR goal remains to be
accomplished. That is accurate prediction of out-
put variable value needed for new, most frequently
not yet synthesized molecules. If one uses random
subsampling even in the case of universal DS
existence more than one model should be taken

into account. It should be kept in mind that besides
DS trained NN makes chromosome i.e. complete
QSAR model. Since there could be more than one
trained NN counterpart of universal DS it seems
appealing to use ensemble of such solutions for
final QSAR predictions [21]. Proposed method
resembles ensemble based approaches developed
by Yao & Liu [19] and well-known bagging and
random forests developed by Breiman [16, 17]. But
simple model interpretation is the major theoretical
advantage of proposed approach, which is also the
main goal of this study.

Only when both DS and NN components of
the model are obtained simultaneously, and that is
the case with universal DS solutions one can use
such DS for both, molecular behavior interpreta-
tion and output variable value prediction. If
universal DS does not exist and one constructs
final DS based on descriptor frequencies taken
from eligible model pool prediction task is even
more complex. There is a high chance of overfit-

Figure 2. Model selection. Each model pool produced during 50 generations of ENN/GNN based model training and selection
contains 10,000 chromosomes. Golbraikh’s filter is based on application of acceptability rules while the stability filter is based on
existence of one or more DS which exists at least in one copy in each of 10 ‘‘ ¢ ’’ pools.
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ting when such, preselected DS construct is reused
for final model building. If one constructs final DS
based on descriptor frequencies such model
doesn’t contain NN part. In order to remove this
deficiency one can use such DS construct for NN
training based on dataset that has already been
used for DS construction! This leads to overfitting
[22]. Therefore constructed DS based on descriptor
frequencies could only be used for interpretation
of analyzed QSAR. In order to make correct
prediction in such case one can use all models as a
model ensemble. Mattioni and coworkers already
have applied this approach in QSAR analysis [11].
Novel approach is compared against this, already
accepted method that will be referred to as
standard method.

According to results published by So and
Karplus on GNN based models of benzodiazepine
interactions with GABAA receptor acceptable
LOO prediction results have been achieved [4].
Results based on different nonlinear approaches
obtained on the same or closely related datasets
confirmed high LOO prediction quality of models
reported by So and Karplus [32, 33]. Since
different groups have previously analyzed this
dataset it represents a good candidate for direct
final QSAR model comparisons. Moreover, exact
descriptor values for each analyzed molecule are
available for this set. This is critical for ENN/
GNN evaluation reproducibility. Since there are
only 42 descriptors there is no need for preselec-
tion of descriptors while 57 benzodiazepines is not
too large number and it represents usual QSAR
experimental settings. Due to the given facts we
selected benzodiazepine dataset for novel ENN
based DS design evaluation.

Methods

EA considerations

Elitism concept is applied [20]. All high quality
chromosomes are selected for breeding no matter
if they were offspring or parents in previous
generation. Chromosomes featuring appropriate
FF values have better chance for multiple breeding
this way. ENN training is composed of 50 gener-
ations. Two hundred individuals exist in each
generation and each parent produces only one
child per generation. Reproduction is based on
application of DS mutation operator that has been

applied for production of all children i.e. by 100%
frequency. Crossover operator with defined fre-
quency, that is either kept constant or monoton-
ically changes its value during evolution has been
implemented but no improvements were noticed.
Although some QSAR results have been reached
by the application of such operators [12] we were
not able to find any detailed analysis of influence
of these functionalities on external validation
quality. Moreover, some authors described theo-
retical disadvantages of crossover operator appli-
cation in GNN training [19, 34]. Strictly speaking
only ENN with fixed relative frequency of DS
point mutation equal to 100% has been used in
following study.

There is no guarantee that offspring DS has the
best performance in combination with initial
weight NN values inherited from parent chromo-
some. Some connectionist packages already imple-
mented random variation of initial NN weights as
an NN training option [35]. Since it has been
implemented on NN training level it seemed
natural to use this functionality as NN genetic
operator on evolutionary level. Initial weight
mutation operator is based on random generation
of variations from actual parent initial NN weight
values. DS mutations have better chance this way
for adaptation and survival. Values of this operator
were set constant throughout all generations and
they were fixed at ±50% of parent NN weights.

All applied operators do depend on some
random number generator. In order to make
adequate comparison of results all random vari-
ables were generated by corresponding mutually
independent and uniformly distributed random
number generators that are controlled by random
seed selection.

Random subsampling

Random subsampling has been applied in two
ways: for multiple partition of complete dataset
into training and test set needed for external
validation and for multiple training set partition
into learning and validation set needed for internal
validation. These settings represent a form of
nested cross-validation. Typical experiment is
described in Figure 3.

If it is not stated otherwise, for external
validation examinations 10 random, complete
dataset partitions (npart) into training set, composed

g pp p g
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of 43 molecules and test set composed of 14
molecules (25% of all molecules) were made.

Random subsampling is also implemented in
internal validation i.e. LMO FF value calculation.
Multiple LMO FF is dependant on two user-
defined variables: nsubd and nval. Since Baumann

reported that selection of nsubd value is not of
crucial importance we did not analyze the influ-
ence of nsubd value on experimental outcome. In
all experiments nsubd has been set to 100. The
same 100 partitions were used in all experiments.
On the contrary, selection of nval value is reported

Figure 3. Application of random subsampling.
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to be very important. Unfortunately, selection of
FF nval value does not posses firm theoretical
ground [23]. Therefore this value should be
determined experimentally. Application of exter-
nal validation is restricted during the wrapper
training but it is allowed to use external valida-
tion results to select the best model, and
consequently the best set of user-defined vari-
ables after the wrapper training has been done
[20, 23, 24]. We utilized this fact for experimen-
tal determination of the most suitable nval.
Influence of analyzed nval values on average
external validation results and number of eligible
DS obtained by ENN training based on 10
random dataset splittings was analyzed. NN
topology with 4 input layer, 2 hidden layer and

1 output layer neurons (4-2-1 NN topology) has
been used for nval selection while LMO nval
values tested were 8, 11, 14, 17 and 20. This way
from 19% to 47% of the training set is
sequestered for internal validation. Training set
is obviously very small. It consists of only 43
molecules. Therefore analysis of ENN perfor-
mance based on higher nval values did not seem
convenient. Although 40–60% interval has been
proposed by Baumann as a starting point for
nval selection, lower optimal percentages have
been already described by the same author.
Results of nval influence on performance char-
acteristics are given in Figures 4a, b.

According to these results 11 was recognized as
near optimal LMO nval value. However,

Figure 4. (a) Dependence of eligible models percentage on nval. (b) Dependence of eligible models external validation ÆR2æ on nval.
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nval = 14 is characterized by similar performance
characteristics as nval = 11. On the other hand,
only nval = 8 seems to significantly reduce values
of both figures of merit. It could be seen that
selected nval value represents quite small percent-
age (�26%) of training set and it corresponds to
percentage of molecules taken from complete
dataset for external validation.

Baumann reported that optimal nval value is
primarily influenced by dataset structure and/or
mathematical relationships between input and
output variables and the number of molecules
[23, 24]. If one determines optimal nval value in
one experiment it could be used in similar exper-
iments performed on the same dataset. All follow-
ing experiments were based on application of
ENN on the same dataset. Only differences were
the number of input neurons, and consequently
the number of variable NN parameters. Accord-
ingly, it seems convenient to set nval value to 11 in
all following experiments.

NN implementation

Basic facts about NN, in our case three-layered
perceptron could be found elsewhere [36, 37]. Still,

there are some points specific for this study which
are related to NN that should be described here.
First of all, batch version of scaled conjugate
gradient (SCG) NN learning algorithm is selected
[4] since the use of Hessian matrix diagonal
elements lessens the chance for getting stuck in
local minima during NN training [38]. Number of
NN training steps is set to 20 epochs since
application of fixed and rather small number of
training epochs lowers the probability of chance
correlation and ensures faster computations [18].

Two rules of thumb for NN topology con-
struction were considered. Leardi and Gonzales
[20], as well as Baumann [21] suggested that
the number of molecules should be at least five
times the number of DS elements. In order to
implement this rule we used fixed number of input
neurons [4, 7]. According to another rule of thumb
used by Chiu and So [39] and Patankar and Jurs
[10] the number of training objects in this case
molecules should be approximately twice the
number of NN adjustable parameters. Similar or
even more demanding rules could be found in NN
literature [36]. According to these rules and
because only 57 molecules are present in benzodi-
azepine dataset the choice of NN topology is very
restricted. These facts limited our study to 6 input
neurons, 1 hidden layer and 2 hidden neurons at
maximum (6-2-1 NN topology). Such small NN
restricted severely usage of random topology
generation and magnitude based link pruning
operator that we have implemented [8, 34, 35].
According to the second rule of thumb only 4-2-1,
3-2-1 and 3-3-1 NN topologies with biases
included are acceptable. In order to avoid chance
correlations [20, 24] instead of NN topology
evolutionary adaptation fixed 4-2-1 fully con-
nected NN topology with bias terms included
was used as a starting topology. NN with higher
and smaller value of number of training elements
per number of adjustable NN parameters were
also examined.

All descriptors from a set composed of 42
elements were scaled to 0.1–0.9 interval same as
output variable, namely benzodiazepine binding
affinity for GABAA receptor represented by log
IC50. Initial weights are generated randomly from
[)1, 1] interval and logistic function was selected
for NN transfer function between input and
hidden layer. Hidden and output layer were
connected with linear transfer function. SCG

Table 1. Selected user-defined ENN/GNN parameters.

NN evolutionary training parameters

Initial weight mutation

interval boundaries (%)

)50, 50

Percentage of weight mutation

interval boundaries change

per generation (%)

0

Frequency of selection of

candidate NN for link pruning (%)

0

Link pruning selection frequency

change per generation (%)

0

General ENN/GNN parameters

Number of offspring produced per parent 1

Number of parents 200

Number of generations 50

Descriptor selection parameters

DS point mutation frequency (%) 100

DS point mutation frequency

change per generation (%)

0

Frequency of DS cross-mating (%) 0

DS cross-mating frequency

per generation (%)

0

Skipped parameters are given in previous text.
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Figure 5. ENN/GNN training. Gray boxes are implemented but they have not been used in following experiments. Random appli-
cation of specific operators is made in accordance with corresponding operator frequencies.
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Figure 6. (a) Dependence of percentage of models that pass Golbraikh’s filter on the number of DS elements. (b) Dependence of
external validation ÆR2æ corresponding to all eligible models on the number of DS elements. (c) Dependence of number of universal
DS on the number of DS elements.
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user-defined parameters are set to values proposed
by So and Karplus [4] and Møller [38]. Near
optimal ENN/GNN training user defined vari-
ables used in this study are given in Table 1.

Some of the implemented options were not
used. Therefore corresponding user defined vari-
able values are equal to 0%. 200 NN were
generated per each of 50 generations. Each, among
10 dataset splittings was used for ENN training
and evaluation. This means that 100,000 QSAR
models were trained and tested in a typical
experiment. Figure 5 represents ENN flow chart.

Computational aspects

Instead of ab initio programming approach pub-
licly available software solutions were considered.
Few non-commercial software solutions for NN
training are available. Stuttgart Neuronal Network
Simulator 4.2 (SNNS) has been chosen [35]. SNNS
has been employed for different regression and
classification problems. Moreover, it has been
recognized by QSAR community [40]. The number
of NN design and training options that it offers is
quite large. Most of GNN routines were written in
SNNS interpreter called batchman. Still, there were
some limitations that were solved by writing short
C/C++ scripts that were precompiled and by
some Python scripts. Corresponding executables
were called from main batchman program. Ob-
tained ENN results were analyzed by the applica-
tion of Statistica 6.0 (StatSoft, Inc.) and routines
written in Mathematica 5.0 (Wolfram Research,
Inc.). In order to make further ENN/GNN devel-
opment and results comparison possible all rou-
tines used in this study are available on request.1

Results and discussion

Influence of input layer size on DS stability
and predictive performance

The number of DS elements, as well as total
number of descriptors is expected to have signif-
icant impact on existence of universal DS. The
number of DS elements and total number of
descriptors directly determine the number of all
possible DS combinations. Number of all possible
DS combinations inversely correlates with proba-
bility of finding single universal DS or any other

specific DS in general. In case of 4-2-1 topology
number of all possible DS combinations is equal to
111930. This means that performance of at most
�9% of all DS combinations is analyzed during
single ENN training under settings given in
previous text. Due to a large number of possible
DS combinations, determined by number of input
neurons search for universal solutions character-
ized by acceptable predictive performance appears
to be very challenging task even in case of 4-2-1
NN topology. Therefore our research started with
analysis of the influence of DS elements number
i.e. number of input layer neurons on the percent-
age of eligible models, corresponding predictive
performance and existence of universal DS.
Results are given in Figure 6a–c.

The percentage of solutions that pass Gol-
braikh’s filter increases almost in linear fashion as
the number of DS elements increases. It is expected
that inclusion of higher number of descriptors in
QSAR model enables capturing more QSAR
details in comparison to small QSAR models i.e.
small models are prone to underfitting. However,
ÆR2æ reaches the saturation limit around value of 5
(Figure 6b). This behavior indicates arise of inef-
ficient search over the DS combinations space and/
or inappropriate evolutionary NN training (under-
fitting or overfitting). In case of 6 input neurons
5245786 DS combinations are possible. This num-
ber represents �47 times the value that corre-
sponds to 4 input neuron case. Therefore, DS
combination space burst, and consequently ineffi-
cient search over the DS combination space repre-
sents very probable cause of ÆR2æ curve saturation.

DS combination space search is very efficient
for small models while small number of input
neurons restricts acquisition of important under-
lying QSAR features. Very efficient DS combina-
tions space search accompanied by a small number
of input neurons inevitably leads to speciation or
even learning based on noise i.e. overfitting. It is
expected that models obtained this way are char-
acterized by poor external test based predictive
performance. Golbraikh’s filter removes large
number of such models from the model pool and
makes existence of universal DS unlikely when
small NN are used (Figure 6c).

Problem with large models is the burst of
possible DS combinations caused by input layer
neuron number increase, which results in multi-
tude of very heterogeneous solutions. Large
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number of DS combinations makes detection of
universal DS less likely despite the fact that large
number of input neurons does not diminish
predictive performance (Figure 6b). Increase of
the number of DS combinations accompanied by
unchanged ENN training settings could lead to
negative interaction between applied DS point
mutation and NN weight mutation operators.
Existence of few copies of the same or closely
related DS in a single ENN generation provides
better chances for evolutionary adaptation of
corresponding NN chromosome parts of such
QSAR model classes. On the contrary, when single
copies of many heterogeneous models exist in one
ENN generation they make NN chromosome part
evolutionary improvement provided by weight
mutation operator less efficient. Inefficient NN
training leads to loss of acceptable chromosome
candidates during the evolution. It is expected that
among dumped chromosomes exist potentially
universal DS. Moreover, large number of different
DS accompanied by inefficient NN learning opens
possibility of chance correlations. Models charac-
terized by chance correlation may survive Gol-
braikh’s filter based selection. By removing all
unstable i.e. non-universal models from the pool
stability filter directly restrains QSAR model
selection in cases when DS combination burst
causes inefficient NN part evolution.2

Predictive performance saturation depicted
in Figure 6b is only an indication of negative

evolutionary operator interaction. Detailed study
of this ENN training aspect is beyond the scope of
this article. But if the presumption about negative
interaction between evolutionary operators is true
then chance correlation problem arises and appli-
cation of double filter based approach could be
useful. However, application of double filter stops
the NN topology selection process when ÆR2æ
increase corresponding to QSAR models that pass
Golbraikh’s filter reaches saturation.

Selection approach based on consecutive Gol-
braikh’s and stability filter application yields
results given in Figure 6c. It could bee seen that
input neuron number gradual increase accompa-
nied by fixed ENN training settings results in
maximum on ÆR2æ curve. This maximum corre-
sponds to 5-2-1 NN topology. This NN topology is
in agreement with the first rule of the thumb given
in experimental part. On the contrary, number of
training objects per number of NN variable
parameters is lower than 2. However, experimental
evaluation of 5-2-1 topology shows that predictive
performance is acceptable. Therefore 5-2-1 NN
topology has been used in following experiments.

Influence of npart on definition of DS stability

The second factor that has an important impact on
existence of universal DS is npart. One can easily
create such complete dataset partition that is
characterized by highly different training and test

Figure 7. Theoretical ROC curve that corresponds to selection of universal DS based on npart = 60 and T = 6.
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set distributions of one or more descriptors or even
output variable. It is obvious that such situation
could happen also in case of random generation of
dataset partitions. The probability of such event is
proportional to npart. On the other hand, abso-
lutely efficient model selection tool does not exist
and therefore some potentially universal DS could
be missed due to a chance during training.
Therefore application of all-or-nothing rule in
determination whether specific DS is universal or
not needs to be redefined.

Possibility of false negative and false positive
conclusions i.e. chance correlation that enables
some inappropriate model to pass selection raises a
question about selection of optimal cut off value
(T). If specific DS exists as acceptable solution in
more than npart)T complete dataset subsampling
cases such DS could be described as universal. On
the contrary, DS characterized by T or higher
number of failures is considered to be non-
universal. Appropriate T should be characterized

by smallest possible probabilities of false negative
(a) and false positive (b) errors and it expected to
be close to 0.

We can assume that failures of specific model
to pass filters during npart repetitions of described
experiment based on random and independent
dataset splitting distributes according to binomial
distribution [41]. This assumption enables con-
struction of appropriate decision-making strategy.
If one finds 10% probability limits corresponding
to a and b errors (p(a) and p(b)) acceptable and
also accepts [0.05�npart, 0.15�npart] as appropri-
ate location of T then optimal npart and corre-
sponding T could be determined. Let assume that
true probability of universal behavior correspond-
ing to specific DS equals 0.95. Under given
conditions DS should be accepted in at least
90% of cases (p(b) £ 10%). When true probabil-
ity of universal behavior equals 0.85, 90% of cases
would be rejected (p(a) £ 10%). True probabili-
ties here define ‘appropriate location of T ’. In this

Figure 8. Comparison of ÆR2æ distribution characteristics corresponding to external predictive performance of all DS that pass Gol-
braikh’s filter against ÆR2æ distribution characteristics corresponding to external predictive performance of DS that pass Gol-
braikh’s and stability filter (double filter). Y-axis represents ÆR2æ. R2 averaging is made over all members of specific DS set
(universal, non-universal) for each complete dataset partition. npart = 60, T = 6.
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way theoretical approach to receiver operating
characteristic (ROC) has been defined and based
on it optimal npart and T have been calculated.
Under described assumptions corresponding opti-
mal values for npart and T are 60 and 6,
respectively. This means that if one makes 60
random partitions of complete dataset corre-
sponding T value for rejection of hypothesis about
universality of specific DS equals 6. In other
words, if specific model fails selection in 6 or more
cases of complete dataset partition and total
number of partitions is 60 then such DS is not
universal. Corresponding theoretical ROC curve is
given in Figure 7.

Due to symmetric behavior of cumulative
binomial distribution optimal T value falls near
the middle of selected interval. Actual p(a) and
p(b) under given settings are 7.87% and 9.68%,
respectively. We could calculate p(a) and p(b)
corresponding to 10 and 0 pair of values selected
at the beginning of this research for npart and

T. p(b) equals 19.69% while p(a) is quite high and
it equals 40.12%. In other words, probability of
rejection of hypothesis about specific DS univer-
sality when true positive rate equals 0.95 is very
large. This shows that such values could only be
used for initial DS universality screening. Lower
limit values for p(a) and p(b) could be required and
lower T interval limits seem attractive but such
requests dramatically increase computing de-
mands. Tight limitations simply lead to huge
increase of optimal npart. Of course, tight limita-
tions make decision-making protocol more con-
vincing. For example, application of 5% value p(a)
and p(b) limits and [0.01�npart, 0.05�npart] T
interval leads to npart = 181 and T = 5. There-
fore, selection of npart and T values directly
determines DS universality definition and statisti-
cal properties of DS stability based selection at the
same time.

At the end, it should be noticed that this
analysis is grounded on assumption about binomial

Figure 9. Comparison of Æq2æ distribution characteristics corresponding to internal validation performance of all DS that pass Gol-
braikh’s filter against Æq2æ distribution characteristics corresponding to internal validation performance of DS that pass Golbraikh’s
and stability filter (double filter). Y-axis represents Æq2æ. q2 averaging is made over all members of specific DS sets (universal, non-
universal) for each complete dataset partition. npart = 60, T = 6.
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distribution of failures of specific DS to pass filters
in multiple external validations. Simulation exper-
iment could be used for generation of more
appropriate ROC curves, but such experiment is
beyond the scope of this article.

DS stability influence on predictive performance

DS stability is expected to have significant impact
on QSAR model interpretation. Still, it is inter-
esting to see whether DS stability affects external
and internal predictive performance or not. In
order to analyze this 60 partitions of complete
dataset were made (npart = 60). For each of these
partitions ENN training followed by application
of double filter has been done. Cut off T value
was set to 6. About 17 DS and corresponding
QSAR models survived double filter based selec-
tion. ÆR2æ results corresponding to all QSAR
models that survive Golbraikh’s filter are com-
pared with results corresponding to all universal
DS (Figure 8).

It is visible that certain improvement of ÆR2æ
could be achieved by implementation of stability
filter in addition to Golbraikh’s filter. Both, t-test

for dependent samples and Wilcoxon matched pair
test confirm significant differences between ÆR2æ
values corresponding to analyzed approaches to
QSAR ensemble generation. These statistical
hypothesis tests have been selected since the
comparison is based on results obtained by appli-
cation of both QSAR model ensemble-forming
principles on each complete dataset partition.
According to the statistics at least marginal
differences between standard and novel approach
exist i.e. application of novel approach could in
some cases produce better ÆR2æ results. More
appropriate comparison could be done if one
more nesting level was available. In other words,
more independent external sets are required for
such analysis. These sets could be used as a
benchmark for independent comparison between
standard and novel QSAR model ensemble
predictive performance. Since benzodiazepine
dataset is not very large further investigations
in this direction are a part of our ongoing research.
Briefly, we use double filter approach similar to
one described in previous text for selection of
acceptable trees and stable descriptors in
random forest based QSAR modeling [42] of some

Table 2. Universal DS elements.

No. of successes % of successes DS element no.

1 2 3 4 5

57 95.00 p7 F7 MR1 rm2¢ p8

56 93.33 p7 F7 l1 MR1 l2¢
56 93.33 p7 F7 MR1 R1 l2¢
56 93.33 p7 F7 MR1 rp1 l2¢
56 93.33 p7 F7 MR1 l2¢ rm2¢
56 93.33 p7 F7 MR1 l2¢ p8

56 93.33 p7 F7 MR1 l2¢ MR8

55 91.66 p7 F7 MR1 R1 rm2¢
55 91.66 p7 F7 MR1 rp1 rm2¢
55 91.66 p7 F7 MR1 l2¢ F2¢
55 91.66 p7 F7 MR1 l2¢ l6¢
55 91.66 p7 F7 MR1 l2¢ MR6¢
55 91.66 p7 F7 MR1 l2¢ R8

55 91.66 p7 F7 MR1 rm2¢ p6¢
55 91.66 p7 F7 MR1 rm2¢ MR6¢
55 91.66 p7 F7 MR1 rm2¢ rp6¢
55 91.66 p7 F7 MR1 rm2¢ F8

First part of descriptor symbol corresponds to physicochemical property of the specific substituent on the benzodiazepine structure
represented by second part of symbol [4]. Benzodiazepine structure is given in Figure 10. Substituent physicochemical properties taken
into account are: lipophilicity (p), polar constant (F), molar refractivity (MR), dipole moment (l), resonance constant (R), Hammet
meta (rm) and para constants (rp). The first column represents number of complete dataset partitions for which specific DS survived
selection.
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coumarin derivatives. Preliminary results confirm
existence of universal solutions, in this case
universal descriptors and even the reduction of
predictive performance variation. However, either
increase or decrease of predictive performance
calculated on completely isolated dataset parti-
tions based on application of double filter in
comparison to non-filtered results has not been
observed. Still, usage of acceptability filter alone
leads to some predictive performance improve-
ment. These findings leave the question about
possible improvement of predictive performance
due to application of different filters still open.

As shown in Figures 8 and 9, median ÆR2æ
values and median Æq2æ are almost the same in case
of novel approach as well as in the case of
standard approach. This is in agreement with
analysis of relation between R2 and q2 values made
by Golbraikh et al. [25]. Variation of Æq2æ values
that correspond to acceptable QSAR models is
very small while at the same time the variation of
ÆR2æ values is somewhat higher.

Figure 8 also shows existence of ÆR2æ higher
than 0.9. According to the same figure consider-
ation of these results that correspond to one or
two dataset partitions instead of consideration of

the complete pool of results corresponding to all
analyzed dataset partitions leads to incorrect
predictive performance description. This finding
suggests that predictive performance reports which
are brought based on results corresponding to
small number of complete dataset partitions i.e.
hold out sets are in best case insufficient. It is
interesting to notice that this finding is in accor-
dance with recommendations made by authors
who argue against usage of (single) hold out tests
but in favor of LOO validation [28].

Benzodiazepine QSAR and description stability
significance

As mentioned earlier under given conditions 17
universal DS have been found. These universal DS
are given in Table 2 (Figure 10).

According to Table 2 all universal DS contain
descriptors p7, F7 and MR1. Two more descrip-
tors exist in 10 and 8 out of 17 DS. These
descriptors are l2¢ and rm2¢, respectively. Only
one descriptor of five descriptors that constitute
DS makes significant difference between most of
the pairs of DS. This fact advocates for simplicity
of benzodiazepine QSAR model interpretation
provided by novel DS forming principle. It is
expected that application of npart = 181 and
T = 5, as suggested in previous text leads to even
smaller number of eligible DS and smaller differ-
ence between DS pairs. Similar effect is expected if
4-2-1 NN topology is used.

In short, molecular refractivity of substituent 1
and lipophilicity as well as polarity of substituent 7
make major contribution to IC50. Substituent 2¢
which dipole moment and Hammet meta constant

Figure 10. Benzodiazepine structure.

Table 3. Selected descriptor ranges that minimize IC50.

Descriptors Descriptor range that minimizes IC50

MR1 [1.03, 1.03]

p7 [)0.28, 0.71]
F7 [0.41, 0.67]

l2¢ [)1.59, )1.43]
rm2¢ [0.34, 0.37]

Interval limits represent descriptor minima and maxima corre-
sponding to five most potent benzodiazepine derivatives used in
this study (Tables 1 and 2 in Ref. [4]).

Table 4. Ten descriptors selected according to their relative
frequencies of appearance in DS that pass Golbraikh’s filter.

No. Descriptors Relative descriptor frequency (%)

1 MR1 99.52

2 p7 98.31

3 F7 72.95

4 l2¢ 44.32

5 rm2¢ 35.74

6 F2¢ 19.44

7 rm7 17.81

8 rp2¢ 6.96

9 p2¢ 6.67

10 l7 6.41

851



are very frequent elements of universal DS is the
third most important benzodiazepine pharmaco-
logical determinant. Based on selected descriptor
values that characterize five most potent among all
analyzed benzodiazepines Table 3 has been made.

According to study results benzodiazepine
candidates should be characterized by descriptor
values that lie within descriptor intervals given in
Table 3. Instead of interval, only one value is
assigned to MR1. This value corresponds to H
atom that should be placed at position 1. p7
interval indicates that substituent 7 should be
characterized by approximately equal affinity for
water and n-octanol. The same substituent should
be as much polar as possible at the same time.
Finally, mid-levels of l2¢ and rm2¢ should be
achieved in order to improve benzodiazepine
candidate IC50. Described descriptor value opti-
mization is quite conservative since it is based
solely on input dataset. Although extensive exter-
nal model validation lowers the risk of extrapola-
tion errors extrapolation has been avoided. Other
IC50 minimization methods based on known
functional dependence between IC50 and selected
descriptors that involve extrapolation could be
found in literature [4].

Table 4 represents selection of 10 most fre-
quent descriptors that exist in DS pool formed
by application of Golbraikh’s criteria on all DS
produced by ENN in each of 60 complete
dataset partitions. Qualitative examination con-
firms correspondence between results obtained
by application of standard and novel DS form-
ing principles. Main problem with standard DS
forming principle is the cut of value for inclusion
of specific descriptor in final DS based on
descriptor relative frequency of appearance. This
number lacks theoretical framework [11]. The
same assumptions about binomial distribution of
failures used in previous paragraphs for universal
DS selection could be applied this time on
descriptors. According to this approach only
the first two descriptors, namely MR1 and p7
pass selection i.e. only MR1 and p7 could be
accepted as truly important benzodiazepine fea-
tures. Since the number of biological determi-
nants is very small this method resolves the
problem of QSAR model interpretation in stan-
dard DS forming principle. The interpretation is
almost the same as in the case of novel DS
forming principle application.

Before we start with comparison of presented
results with results published by others a few
things should be stressed out. In comparison to
NN topologies used by So and Karplus [4] and
Maddalena and Johnston [32] NN topologies used
in our approach are less complex. This is related to
input layer size in the first place. So and Karplus
used in some experiments topologies with as much
as 30 input neurons. However, in most of the
experiments they used 10-3-1 NN topology. In
analysis that preceded this study influence of 3
hidden layer neurons on predictive performance
was analyzed. It was found to be insignificant
(results not shown). According to that hidden
layer size does not make much impact on benzo-
diazepine QSAR results comparison. Still, input
layer size differences could be important. Another
important difference between analyzed benzodiaz-
epine QSAR model development methods is val-
idation method selection. While So and Karplus
[4] and Maddalena and Johnston [32] used LOO q2

we used multiple external validations besides
internal LOO q2 i.e. application of Golbraikh’s
filter on multiple random dataset partitions.
Although Golbraikh’s filter contains LOO q2

based criterion model selection is dominated by
external test set R2 (results not shown). It is not
easy to deduce potential influence of validation
method difference on following comparison but
some of result differences could be attributed to
validation method selection.

Correspondence between results published by
So and Karplus [4] and other authors that devel-
oped their own benzodiazepine QSAR with our
results remains to be analyzed. So and Karplus
used few best performing DS for descriptor
frequency based final model development. MR1,
p7 and rm2¢ emerged as most important biological
determinants. It is interesting to notice that F7
does not belong to the group of most frequent
descriptors while rm7 has similar importance as F7
in their benzodiazepine QSAR. Moreover, one of
the most important descriptors that emerged in
our analysis, namely l2¢ does not exist at all on list
provided by So and Karplus (Table 4 from [4]).
Plausible explanation of these differences is high
correlation between F7 and rm7 as well as l2¢ and
rm2¢. rm2¢ is quite frequent descriptor among
descriptors listed by So and Karplus [4]. Although
F7 and rm7 as well as l2¢ and rm2¢ are character-
ized by almost the same correlations with IC50
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rm7 and rm2¢ are very rare descriptors among all
descriptors from DS pool produced by application
of Golbraikh’s filter. On the contrary, So and
Karplus [4] did not put l2¢ on their list at all. This
result shows that even when there is almost perfect
correspondence between input variables accompa-
nied by same correspondence of each input vari-
able with output variable different modeling tools
assign different preferences to each input.

Results provided by Maddalena and Johnston
[32] are characterized by specific descriptor pat-
tern, but most important descriptors from our
point of view are retained in their approach. If one
analyzes benzodiazepine QSAR model correspon-
dence between these three groups of results from
most important substituent perspective it could be
stated that it is satisfactory. All approaches
recognized that substituents 7, 1 and 2¢ have
significant influence on IC50. But model details
contained in specific substituent descriptors are
different in some instances.

Comprehensive quantitative results compari-
son is not possible since different validation
protocols and somewhat different equations were
used. Still, some general aspects could be analyzed.
In comparison to results published by So and
Karplus [4] less than a perfect internal LOO q2

characterize most of benzodiazepine QSAR mod-
els obtained in this study (Figure 9). This result is
a consequence of improvement of external valida-
tion R2 values [25]. More interesting comparison
would be comparison of external validation
results. Unfortunately, external validation was
not a widely accepted practice when analyzed
publications were made. However, at the begin-
ning of preliminary study we used LOO q2 as FF
used during wrapper training. Very high LOO q2

values (>0.95) were achieved then, but external
performance was poor. Therefore we abandoned
this type of internal validation FF.

Finally, practical aspects of these methods are
compared in the following text. In general, novel
approach is not much more demanding than
approach used by Mattioni et al. [11]. Still, large
increase in CPU time needed for computations in
comparison to So and Karplus [4] and Maddalena
and Johnston [32] is obvious. Applications of
multiple external validations and/or multiple
LMO FF are main causes of large increase of
CPU demands. We have shown that single dataset
partition results are insufficient for appropriate

predictive performance description. Therefore
multiple external validations are unavoidable.
One of the goals of any type of QSAR is to find
model with acceptable performance. It has been
shown by others [21, 23, 24] that internal multiple
LMO FF correlates well with external validation
results. This fact makes multiple LMO FF suitable
training FF that drives evolutionary NN training
towards selection of models characterized by
acceptable external predictive performance. Unes-
sential performance differences between models
that have 3 hidden layer neurons in comparison to
models that have 2 hidden layer neurons advocate
for application of GA partial least squares hybrid
[20] instead of ENN if CPU time is limitation
factor. This switch can save significant amount of
CPU time. Another option is application of taboo
search [21, 23, 24] or some similar descriptor
selection tool instead of CPU time consuming GA.
In our current research we use random forest
method which application is characterized by
significant reduction of CPU demands along with
acceptable predictive performance.

Conclusions

Standard and novel ENN based QSAR model-
forming principles were applied on benzodiazepine
dataset. Predictive performance and resultant
pharmacological determinants were examined.
External ÆR2æ coefficient of variation (CV) calcu-
lated over 60 partitions i.e. 60 ENN ensemble
training experiments was �10% while internal Æq2æ
CV was less than 2% for both approaches.
Although ÆR2æ CV values are somewhat higher
than expected overall predictive performance sta-
bility is considered to be acceptable. Predictive
performance itself is acceptable in both cases.
Reasonable ÆR2æ and corresponding CV values
also show that possible existence of molecular
clones does not affect predictive performance
reliability.

Besides acceptable and stable predictive per-
formance DS stability has been achieved by
application of novel approach. Under given
assumptions 17 universal and very similar DS
were collected. Any of them fails to pass Gol-
braikh’s filter step in less than 6 occasions i.e. in
less than 10% of all experiments. On the other
hand, standard model building principle based on
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ENN ensemble results obtained on multiple data-
set partitions was improved. Theoretical frame-
work based on binomial distribution properties for
pharmacological determinants selection from a set
of many candidates produced by standard final DS
forming principle is given. Direct consequence of
presented results is simple and straightforward
final QSAR model interpretation.

Benzodiazepine QSAR has been revisited.
Minor differences among analyzed model building
methods were detected. Both studied approaches
designated MR1 and p7 as benzodiazepine phar-
macological determinants. Besides these two
descriptors some of 2¢ substituent specific descrip-
tors play an important role in IC50 predictions
according to analyzed methods. It is quite surpris-
ing that major benzodiazepine substituents recog-
nized in this study almost perfectly correspond to
substituents reported by other authors who did
not use external validation and multiple dataset
partitions. On the other hand, selected descriptors
could be affected by chosen validation protocol.
It can be concluded that these validation proto-
cols make little impact on model interpretation
when molecules are solely represented by sub-
stituent specific descriptors. This is even more
obvious in cases when descriptors corresponding
to a single substituent are correlated. It would be
interesting to see how these validation protocols
affect descriptor selection in cases when molecules
are represented by descriptors that describe mol-
ecule as a whole.

Finally, DS stability related issues are not the
only important issues related to QSAR model
interpretation. As Kohavi and John [43] pointed
out relevant attributes need not to correspond to
good predictors. This raises important question
whether DS stability could establish more reliable
link between descriptor predictive performance
and its relevance. Together with detailed analysis
related to DS stability in different settings (differ-
ent datasets and different prediction tools) this
issue represents an important topic for the future
research.

Notes

1 Interested readers should send their requests
by e-mail to Željko Debeljak, zdebelja@
inet.hr

2 Possible solution of negative operator interac-
tion problem is application of higher number
of chromosomes per generation and/or appli-
cation of evolutionary operator frequency
modulation, both needed for improvement of
large NN training efficiency.
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